Article of the Month - 
	  February 2011
     | 
   
 
  	    Validation of the Laboratory Calibration of Geodetic 
		Antennas based on GPS Measurements
		
		Philipp ZEIMETZ and Heiner KUHLMANN, Germany
		
					  
					  
		
		 
		This article in .pdf-format 
		(16 pages,  455 KB) 
		
		1) This paper is a peer reviewed 
		paper presented at the FIG Congress in Sydney, Australia in April 2010. 
		The topic of the paper is relevant to all who are interested in high 
		precision GNSS surveying and it is presenting a new and innovative 
		method for antenna calibration.  
		
		Key words: GNSS antenna calibration, GPS, calibration 
		accuracy, anechoic chamber, laboratory calibration, near-field 
		 
		 
		SUMMARY  
		In relative GNSS positioning, the antenna effects are one of the 
		accuracy limiting factors. Besides relative and absolute field 
		calibration procedures, there is an absolute laboratory calibration 
		procedure, which is used at the University of Bonn. Since February 2009 
		a new antenna calibration lab, which is especially concepted for the 
		antenna calibration, is operable.  
		This paper presents some investigations on the accuracy of this 
		calibration procedure. The results are mainly based on GPS height 
		measurements and the comparison with the results from a precise 
		levelling. For this purpose 121 baselines between the 8 pillars of an 
		EDM calibration baseline site with distances between 18 and 1101 meters 
		were analysed. The levelled height differences can be regarded as 
		references, thus it is possible to quantify the absolute GPS-accuracy. 
		Furthermore, the GPS-accuracy is an indicator for the antenna 
		calibration accuracy.  
		The measured height differences are usually smaller than 1-2 mm 
		(maximal deviations), when using the L1 or the L2 frequency, thereby the 
		standard deviation is 0.8mm in both cases. As expected, in case of the 
		ionospheric free linear combination L0 the standard deviation rises up 
		to 3 mm. This very high accuracy is possible if besides other effects, 
		the antenna effects are reduced to a minimum level (e.g. the differences 
		between an individual calibration and a type calibration can reach 
		several mm). It is not possible to quantify the accuracy exactly, 
		because the antenna effect is only one of various remaining 
		uncertainties. Thus, the effects due to the calibration uncertainties 
		are smaller than s = 0.8mm, at least.  
		This high accuracy cannot be reached if dominant near-field effects 
		exist. Near-field effects, which cannot be separated from the behaviour 
		of the antenna itself, limit the accuracy of the relative GPS. Such 
		effects are present in some of the analysed baselines, too. Here, one 
		special antenna-near-field combination causes height differences of 
		several millimeters. The other GPS results show an exceedingly high 
		accuracy and give an idea of the high calibration accuracy. 
		1. INTRODUCTION  
		The phase center of the receiver antenna is the reference point where 
		each GPS/GNSS observation (phase measurement) refers to. Since the phase 
		measurement and, as a consequence, the determined signal path length 
		between antenna and satellite depend on azimuth a and elevation b of the 
		incoming signal, the antenna is not a point in mathematical sense. The 
		purpose of the antenna calibration is to determine the deviations from 
		an ideal point-like antenna as a function of the direction of the 
		incoming signal (see e.g. Geiger 1988).  
		Since the 1980’s different calibration procedures have been 
		developed. Beside the relative and the absolute field procedures, an 
		absolute laboratory calibration procedure exists. This procedure, which 
		is ideally performed in anechoic chambers, is a standard technique in 
		radio-frequency engineering (e.g. Kraus and Marhefka 2003). Such a 
		laboratory procedure was developed at the University of Bonn and a new 
		anechoic chamber is operable since February 2009. The realisation of the 
		calibration laboratory is a cooperation between the University and the 
		Bezirksregierung Köln (District Government of Cologne).  
		The accuracy of the calibration results has been assessed by 
		comparisons with the field procedures in earlier works (Zeimetz and 
		Kuhlmann 2006 or Zeimetz et al. 2009). Additionally, the calibration 
		results can be analysed by applying them for GPS-measurements. To avoid 
		that other GPS uncertainties dominate the antenna effects, it is useful 
		to make these tests in a small local GPS network. For this purpose an 
		Electronic Distance Measurement (EDM) calibration baseline site of the 
		Bundeswehr (German Federal Armed Forces) could be used. The differences 
		between the GPS solutions and the precise levelling visualize in the 
		first place the GPS accuracy and thus among others the remaining antenna 
		effects.  
		A remaining problem is the near-field problem. The near-field depends 
		primarily on the mounting of the antenna (pillar/tripod, tribrach, 
		spacer). Differences between the setup in case of calibration and in 
		case of GPS-measurement can be reduced but not eliminated. The 
		near-field affects mainly the height component, as it becomes visible in 
		the tests presented here.  
		2. ANTENNA PROPERTIES   
		The GNSS receiver antenna converts the electromagnetic satellite 
		signals into electrical currents. After the conversion of the signal, 
		the remaining path length (cable, electronic components) is similar for 
		all satellite signals (except for small amounts), thus, the estimated 
		GPS-position refers to the antenna or more exactly to the so called 
		phase center. This view is only correct if the phase measurements would 
		always refer to one fixed point. In reality, the measured phase depends 
		on the direction (azimuth a and elevation b) of the incoming signal, 
		thus, the so called phase center variations (PCV), which describe the 
		deviations from a mean phase center, have to be considered. The position 
		of the mean phase centre with respect to the antenna reference point 
		(ARP) is usually described by the phase center offset. This 
		classification of PCO and PCV can be found in earlier works on this 
		topic (e.g. Geiger 1988). The corresponding antenna model is illustrated 
		in Fig. 1. 
		
		  
		Fig. 1: Antenna model (Zeimetz and Kuhlmann 2008).
		 
		The measured range sARP (resp. 
		phase) depends on the direction of the incoming signal: 
		  
		with r being the error-free value, e0 
		the unit-vector in the direction 
		a and 
		b of the 
		satellite and  
		e   
		the noise of the observations. A separation of the effects of PCO and 
		PCV is not possible, because for every position of E, a specific set of 
		PCV exist which describe the antenna correctly. In order to solve the 
		singularity the condition
		 
		  
		can be used. 
		Because the PCV can reach values up to 20 mm it is 
		always necessary to use the full antenna model (not only the PCO) if 
		highest accuracy is required. Examples of the phase center variations 
		are presented e.g. in Zeimetz and Kuhlmann 2006. 
		3. ANTENNA CALIBRATION IN THE ANECHOIC CHAMBER BONN   
		The main idea of the laboratory antenna calibration procedure is to 
		simulate the different signal directions by rotations of the 
		GNSS-antenna (Schupler et al. 1994). Therefore, the calibration setup 
		consists of a fixed transmitter on the one end and a remote-controlled 
		positioner carrying the test antenna on the other end of the test range 
		(Fig. 2). At every selected antenna position (equal to a satellite 
		direction) a network analyser (NWA, here Agilent ENA E5062A) generates a 
		signal which is transmitted in the direction of the GNSS antenna. The 
		GNSS antenna is also connected with the NWA, thus, the NWA can measure 
		the phase shift between the outgoing and incoming signals. This phase 
		delay depends on the signal direction. Since the outgoing signal is 
		constant, a grid of phase corrections is directly obtained as a result 
		of the calibration. Usually a frequency range from 1.15 to 1.65 GHz is 
		used, whereby only the frequencies of GPS, GLONASS and GALILEO are 
		usually analysed. 
		
		  
		Fig. 2: Setup of the anechoic calibration facility 
		(Zeimetz and Kuhlmann 2008).  
		Regarding GPS, multipath and near-field effects are one of the 
		largest sources of error (e.g. Wanninger and May 2000). In case of 
		calibration the multipath effects can be reduced to a low level by using 
		special anechoic chambers (Fig. 3), whereas the near-field problems 
		cannot be avoided. As in case of normal GPS applications, the nearby 
		environment of the antenna has an influence on the electromagnetic field 
		and thus on the phase measurement.  
		
		  
		
		Fig. 3: Antenna calibration laboratory Bonn (without antenna positioner) 
		4. POSSIBILITIES FOR THE VALIDATION OF THE CALIBRATION ACCURACY
		 
		The quality (accuracy and precision) of a measurement system can be 
		quantified if there is an alternative procedure with a significantly 
		higher accuracy (factor 3 or more). In case of antenna calibration there 
		are independent calibration systems, but no one which is suitable as 
		reference. Nevertheless, there are possibilities to quantify the 
		accuracy. The different methods for the analysis of the calibration 
		results can be divided into two classes:  
		
			- Analyses by comparison of calibration results on the level of 
			different phase patterns.
 
			- Determining the accuracy of the calibration by GPS-measurements 
			in GPS test sites. 
 
		 
		Comparison of phase patterns 
		In order to determine the calibration accuracy, it is possible to 
		compare the results from different independent calibration procedures 
		(comparisons between laboratory-, relative- and absolute field 
		calibration). This approach supplies a very clear look at the 
		differences between two patterns, but there are two important 
		disadvantages. (1) Only the agreement between two different antenna 
		patterns can be tested. It is not possible to distinguish the 
		differences between the compared antenna patterns into two parts. An 
		absolute accuracy cannot be determined. (2) The effect of the 
		calibration uncertainties on the GPS-measurements cannot be derived from 
		such comparisons. Analysis on the accuracy of the laboratory calibration 
		procedure of the university of Bonn, which are based on direct 
		comparisons of different procedures, were published e.g. by Zeimetz 
		and Kuhlmann 2006 or Zeimetz et al. 2009.  
		Determining the calibration accuracy by GPS-measurements 
		To determine the accuracy of calibration by measurements at a test site, 
		a reference solution is necessary. But, instead of being dependent on 
		GPS, other systems (EDM, precise levelling) can be used as reference. 
		The disadvantage is, that the estimated GPS accuracy is not equal to the 
		calibration accuracy, because of additional uncertainties (e.g. 
		multipath, near-field, tropos-phere). But it becomes obvious, which GPS 
		accuracy can be achieved, when using these calibration patterns and 
		especially when different antenna types are combined. Then, in some 
		cases, the effects of multipath or near-field variations can be 
		quantified, what leads to a more precise statement about the calibration 
		accuracy (as in case of the near-field, chapter 5).  
		4.1 Testing the antenna calibration on an EDM calibration baseline
		 
		It is obvious that antenna calibration results can be tested by GNSS 
		measurements. Due to the large number of other measurement uncertainties 
		such as troposphere effects, multipath, near-field effects and of course 
		random deviations, it is necessary to get a sufficient sample size. A 
		large test campaign was carried out in June 2009. Beside a large sample 
		size of altogether 122 baselines, different setups have been chosen in 
		order to consider the following aspects:  
		
			- same antenna, same mounting, different location (to ensure that 
			multipath effects would not be interpreted as antenna effects) 
 
			- same antenna, different mounting, same station (to test the 
			near-field effect)
 
			- different antennas (to see the antenna effect) 
 
		 
		As relative GPS is used, it is necessary to have a look at both 
		involved setups.  
		The following 9 antennas with individual calibrations were used (3 
		different antenna types):  
		
			- 3 LEIAT504GG (Leica AT504GG Choke Ring Antenna)
 
			- 3 TRM41249.00 (Trimble Zephyr Geodetic)
 
			- 3 TRM55971.00 (Trimble Zephyr Geodetic 2)
  
		 
		Because of the high degree of effort only three antenna types could 
		be considered until now. Perhaps it is possible to complement these 
		antennas, which are most prevalent in GPS networks, by further tests in 
		the future.  
		The EDM calibration baseline site antenna mounting 
		The EDM calibration baseline site (facility of the University of the 
		German Federal Armed Forces) consists of 8 pillars. The distances 
		between the 8 pillars vary from 18 to 1101 meters. The height 
		differences between the top of all pillars are less then 30 mm. Each of 
		the pillars has a height of approximately 1.6 m and all pillars are of 
		the same type, whereas for the mounting of the antenna two different 
		setups were used (see Fig. 4). 
		
		  
		Fig. 4: Pillars and antenna mounting  
		The conditions are very good for precise GNSS-Measurements. The 
		pillars are placed on an earth mound, thus the top of the pillars are 
		between 3 and 4 meters above the surrounding surface level. The fence, 
		visible on the left photo, should produce only short-periodic multipath 
		effects because of the large (vertical and horizontal) distance between 
		the fence and the antennas (e.g. Bilich et al. 2007). In case of such 
		short-periodic multipath effects and an observation time of several 
		hours, only weak multipath effects are expected. As the surface of the 
		mound is uneven and not hard-surfaced, the mound itself should also 
		produce only weak multipath signals.  
		Significant ionospheric and tropospheric effects on the GPS results 
		could not be excluded, even in case of short baselines (e.g. Santerre 
		1991). However, these effects should be very small and depend on the 
		distance between the pillars, thus, these effects would become visible 
		as systematic differences (depending on the distance). Anticipating the 
		analyses, such effects could not be detected, thus, they can be 
		neglected in the current state of accuracy. 
		 
		Observation time: 
		In order to increase the number of different antenna configurations, the 
		observation time has been reduced to a duration between 4 and 10 hours. 
		Especially for the determination of the height, longer observation times 
		are generally used. These observation times were sufficient here, as 
		shown in chapter 5.  
		4.2 Terrestrial Reference Measurements  
		For the validation of the GPS measurements, terrestrial reference 
		measurements can be used. The pillar heights have been measured by 
		precise levelling and the distances between the pillars have been 
		determined by EDM measurements.  
		4.2.1 EDM  
		The accuracy of the EDM is limited primarily by atmospheric effects. 
		Despite the measurement of temperature, pressure and humidity a scale 
		error of about 1 – 2 ppm has to be expected due to mismodeling the 
		effect of atmosphere. Considering the accuracy of the EDM (Leica TPS 
		1201+; 1mm + 1.7ppm) the total accuracy is between 1 and 3 mm depending 
		on the distance, thus the EDM accuracy is comparable with the GPS 
		accuracy. As the EDM measurements serve for independent results, they 
		can be used for the detection of outliers.  
		4.2.2 Precise levelling  
		The height differences between neighboured pillars are measured twice 
		by precise double-levelling. The differences between both solutions are 
		smaller than 0,2 - 0.3 mm. Only in case of the baseline between pillars 
		7 and 8 the deviation is larger (0.4 mm). The antenna heights (heights 
		above the pillars) are measured by levelling, too. Here an accuracy of 
		0.1 0.2 mm can be assumed.  
		When comparing GPS and levelling results, it is necessary to become 
		aware of the different reference levels. The GPS results are related to 
		the used reference ellipsoid (here: GRS80), whereas the levelling 
		depends on the local gravity field. Comparing GPS and levelling, the 
		angle between the ellipsoid normal and the local vertical and the 
		resulting effect on the height determination has to be considered (Flury 
		et al. 2009). For the area of the Federal Republic of Germany the 
		quasigeoid GCG05 (German Combined QuasiGeoid 2005) enables the 
		conversion between ellipsoidal heights (ETRS89) and normal heights 
		(DHHN92). The calculated quasigeoid heights increase from 45.610 m 
		(pillar 8) to 45.636 m (pillar 1). As the normal of the quasigeoid and 
		the direction of the local gravity field do not coincide, remaining 
		relevant deviations are possible. Such height differences would increase 
		with the distance between two pillars (because of the tilt angle between 
		the surfaces), however, such systematic effects are not visible in the 
		results (Fig. 6). 
		
		5. RESULTS  
		The campaign consists of 5 sessions. In the first session only 5 
		pillars could be used, whereas in the other session all 8 pillars were 
		equipped with GPS antennas. Thus, 32 independent baselines were 
		observed. Additionally 90 baselines can be created using the same 
		observations (satellite signals). To have a look at all solutions is 
		quite meaningful. Thereby the effect of the antennas and especially of 
		antenna combinations can be analyzed. Correlations between the 
		observations due to using the same signals are not relevant here. It is 
		rather an advantage when station independent effects are correlated 
		(e.g. correlations from atmospheric effects, orbit erros or the 
		satellite geometry), thus station dependend effects become more 
		significant.  
		To get a first impression about the quality of the measurements, the 
		differences between the precise levelling (geoid corrections are 
		considered as described above) and the GPS-measurements are visualized 
		in Fig. 5 (L1, 10° elevation cut-off, without troposphere parameter 
		estimation), where the sorting of the baselines is random. The maximum 
		deviations are less than 2 mm and the corresponding standard deviation 
		is 0.8 mm. The distribution of the results is very similar to the 
		theoretical Gaussian Distribution (see histogram, Fig. 5). 
		  
		Fig. 5: Differences between GPS and presice leveling 
		(L1) – sorting: random  
		The determined offset of 0.4 mm is significant. The 
		cause is yet unknown, but a few possibilities could be excluded. Fig. 6 
		shows the same results as Fig. 5, but the sorting is different 
		(displayed are all baselines < 630 m i.e. more than 90% of the results). 
		Because there are no effects which depend on the baseline length, 
		ionospheric effects, tropospheric effects and effects of the different 
		reference levels (ellipsoid vs. geoid) can be discarded. Antenna effects 
		are possible, but because of antenna swaps the mean should be zero or at 
		least not significant.  
		
		  
		Fig. 6: Differences between GPS and presice leveling 
		(L1) - sorting: baseline length  
		Altogether, the L1-GPS solutions are quite good, especially as there 
		are also uncertainties from the levelling (see chapter 4.2). In case of 
		relative height determination with GPS, this high accuracy is possible 
		if besides multipath and near-field effects also the antenna effects can 
		be reduced to a very low level. This is especially important when 
		baselines with mixed antennas are analysed, too.  
		For the sake of completeness, it should be mentioned that the results 
		of one station (session 5, pillar 8, à 7 baselines) were eliminated. The 
		deviations are, independent from the choice of the second GPS-point, 
		five times larger than the calculated standard deviation. Thus, these 
		solutions are eliminated as outliers. One possible explanation is that 
		the observation time is very short here (4 hours). However, the fact 
		that the differences between the L1- and the L2-solutions are only 
		around 2 mm contradicts this theory. Another possible explanation is 
		that the antenna height was not measured correctly, but this cannot be 
		clarified afterwards.  
		Even, because of these results, it is important to check whether an 
		increase of time causes a significant higher accuracy. Therefore in Fig. 
		5 results are displayed in red, when the observation time is between 4 
		and 5.5 hours. As the distribution of the red samples is very similar to 
		that of the other results (blue = 5.5 – 10 hours), the observation time 
		of at least 4 hours is suitable in this case. The standard deviation of 
		the red samples is 0.8 mm as well.  
		In the next step the L2-solutions are analysed (Fig. 7). The offset 
		of 0.5 mm is equal to the "L1-offset" of 0.4 mm in a statistical sense.
		 
		
		  
		Fig. 7: Differences between GPS and presice leveling 
		(L2)  
		More important is that the standard deviation is twice as large as in 
		case of L1. A lower accuracy for L2 is typical, but the ratio between 
		sL1 and sL2 is too large. Systematic effects cannot be seen in the 
		results, but the histogram shows some deviations from the theoretical 
		form (red line). This is not unusual for GPS-measurements, but regarding 
		the ionospheric free linear combination L0 these deviations become more 
		obvious (histogram, Fig. 8). A lot of measurements (57) have a deviation 
		of only ±1mm in comparison to the levelling. On the one hand the 
		histogram shows that the calculated value for the standard deviation is 
		too high for these samples. On the other hand there are too many 
		deviations which could not be explained by random noise. 
		
		  
		Fig. 8: Differences between GPS and presice leveling 
		(L0) 
		Since the L1 solutions do not show such systematic effects, there has 
		to be an effect, which affects L1 and L2 in a different way. 
		 
		Impact of the near-field  
		It is common knowledge that the near-field of the antenna changes the 
		behaviour of the electromagnetic field of the antenna and as a 
		consequence the phase measurement of the antenna (see Wübbena et al. 
		2006). In case of the presented GPS-measurements, 3 antenna types and 2 
		different setups were used. By combining different antenna types and 
		different antenna near-fields (mounting) it is here possible to detect 
		near-field effects and ensure that no other effects (e.g. multipath, 
		ionosphere) cause the problems which are visible for L2.  
		In Fig. 9 (left) the differences between GPS and the precise 
		levelling are visualized in a grid (session2, L2, 10° elevation cut 
		off). This grid shows the difference between GPS and levelling heights. 
		In case of the baseline between the pillars 1 and 2 (first box, top, 
		left) the difference is e.g. 2.2 mm. The exact value is displayed if a 
		limit of 1.5 mm is exceeded. If the value is smaller, the difference is 
		depicted only in form of the color coding. This representation was 
		chosen to highlight the relevant values. Additionally the left axis is 
		labeled with the corresponding antenna types.  
		
		504
		= LEIAT504GG = Leica AT504GG (Choke Ring Antenna) 
		TRM1
		= TRM41249.00 = Trimble Zephyr Geodetic (GPS) 
		TRM2
		= TRM55971.00 = Trimble Zephyr Geodetic 2 (GNSS) 
		
		  
		Fig. 9: Differences between GPS and presice leveling 
		(L2) – Session 2 (right figure without combinations with one TRM1 
		antenna 
		Obviously, the largest differences appear if one TRM1 antenna is 
		involved. In these cases, the signs and the amplitudes of the 
		differences are similar (regard the direction: Dh12 = - Dh21). The mean 
		value of these differences is 2.6 mm. When using two TRM1 antennas, the 
		limit will not be exceeded, because similar systematic effects are 
		eliminated in case of relative GPS (baselines 2-3, 2-7, 3-7). In the 
		right figure all combinations with one TRM1 antenna are faded out, what 
		facilitates the comparisons. All deviations are smaller than 1.5 mm.  
		In session 4 one major change has been applied w.r.t. session 2, i.e. 
		the antennas at the pillars 1, 2 and 8 have been equipped with a 255 mm 
		distance piece (Fig. 4 left). In Fig. 10 this is marked by the vertical 
		line in the antenna type name (e.g. “TRM1 |”). As a consequence, the 
		modified TRM1 antenna at point 2 does not show the same (abnormal) 
		behaviour as the ones at point 4 and 7 (mounted as shown in Fig. 4; 
		right). The latter ones behave as in session 2 (Fig. 9). Thus, the 
		changed near field produces a deviation of around 4 mm (Fig. 10; right). 
		Furthermore, the setup with the distance piece shows a good (better) 
		agreement with the levelling.  
		In addition it is obvious that only the TRM1 antennas show such 
		strong near-field effects. Whereas in case of the Choke Ring antenna 
		(504) this can be explained by the better shielding, the behaviour of 
		the TRM2 antenna, which outwardly looks like a TRM1 antenna, was not 
		expected. 
		
		  
		Fig. 10: Differences between GPS and presice leveling 
		(L2) – Session 4 (right figure without combinations with one TRM1 
		antenna)  
		The discussed effects are visible in almost all sessions, however 
		there are examples where the behaviour is different. In session 5 (Fig. 
		11) point 4 (TRM1 | without significant effects) and point 7 (TRM1 with 
		significant effects) behaves as expected. But the result of point 2 
		(TRM1) clearly deviates from the other ones. In general the results of 
		session 5 are slightly different. For example, there are comparative 
		high differences at the baselines 1-3 and 3-5, where TRM2 and 504 
		antennas were used. In absolute terms the deviations are very small (1.8 
		and 1.7 mm) and perhaps the results of random uncertainties. Other 
		reasons for the deviations in comparison to the other sessions are: 
		
			- - Rainfall during the session
 
			- - Observation time (session 5 was the shortest one) 
 
			- - Changed environments (e.g. changing multipath environment 
			because of rainfall).
 
		 
		
		  
		Fig. 11: Differences between GPS and presice leveling 
		(L2) – Session 5 (right figure without combinations with one TRM1 
		antenna)  
		The size of the detected near-field effects becomes clear if the 
		results of all sessions are visualized in one figure (Fig. 12). The 
		sorting of the baselines is again random. The baselines where exactly 
		one TRM1 (without distance piece) antenna was used, are displayed in 
		red. If two TRM1 were used, the results are colored in green.  
		
		  
		Fig. 12: Differences between GPS and 
		presice leveling (L2) with highlighted near-field effects 
		The red samples spread around +2.5 mm and –2.5 mm. 
		Altogether, the blue and green ones show a better agreement with the 
		results from the precise levelling. The standard deviation of the 
		reduced sample (blue & green samples; “TRM1 |” setups are included) is 
		sL2,red = 1 mm and very similar to the L1 solutions. (sL1= 0.8 mm, see 
		Fig. 5). Of course the L0 results show the same systematics (Fig. 13). 
		For the sake of completeness: for the L1 solutions such effects are not 
		visible as expected because of the results displayed in Fig. 5. 
		
		  
		Fig. 13: Differences between GPS and presice leveling 
		(L0) with highlighted near-field effects  
		As presented above, the reason for the great deviations in case of L2 
		is the effect of the near-field, when using the antenna-mounting 
		combination displayed in Fig. 4 (right). But it is useful to discuss, 
		whether other effects could play a contributory role, too.  
		multipath: Improbably because multipath effects are 
		site-dependent and the here discussed effects are visible for one 
		special antenna-mounting-combination and not only at special pillars.
		 
		antenna calibration: In case of calibration there are 
		near-field effects as in the case of GPS-measurements. A separation of 
		the antenna-field and the near-field is not possible as mentioned above. 
		Other systematic effects of the calibration should be similar for all 
		antennas, thus the effects are eliminated in case of relative GPS.  
		atmospheric effects and satellite orbit error: These effects 
		depend on the baseline length, but they are independent from the 
		receiver antenna. The visible effects are independent of the baseline 
		length. 
		 
		Finally, it has to be noted that in the here presented case a Trimble 
		Zephyr Geodetic antenna reacts on changes in the near-field. This result 
		is only valid for the tested antenna-mounting combination. It is 
		possible that in other environments other antennas react sensitively.
		 
		6. CONCLUSIONS AND OUTLOOK  
		In order to review the validity of the absolute chamber antenna 
		calibration procedure, GPS-height measurements are compared with the 
		results of a precise levelling. Based on these measurements, an accuracy 
		of around sHeight
		1 mm could be proven (sL1=0.8 
		mm and 
		sL2=1 
		mm). But it has to be remarked, that in case of one 
		antenna-mounting-combination larger differences were found. These 
		differences were caused by the near-field of the antenna and not by 
		remaining uncertainties of the calibration.  
		In cases without such strong near-field effects, the remaining 
		uncertainty budget is composed mainly of multipath, near-field and 
		tropospheric effects, the remaining uncertainties of the antenna 
		calibration and of the precise levelling. As shown above, it is of 
		secondary importance to obtain the exact amount of the calibration, as 
		long as the near-field problem is not solved. Within the limits of the 
		determined accuracy, the calibration is valid for at least the three 
		tested antenna types.  
		The general benefit of the antenna calibration in absolute terms has 
		not been discussed in this paper. This has been done in earlier works on 
		this topic (e.g. Menge 1998). More interesting is how good the 
		agreement between the currently available calibration procedures is. As 
		for each of the calibration procedures e.g. the mountings of the 
		antennas and so the near-field effects are not equal, differences should 
		become visible if the results of different calibration procedures will 
		be mixed. It is interesting whether it is possible to mix the procedures 
		without a reduction of accuracy. This should be answered by further 
		investigations. The existing data set is well suitable for this task. In 
		a first step, all 9 antennas have to be calibrated with alternative 
		procedures (if possible with relative and absolute field procedure). 
		Hopefully, the analyses with mixed calibrations leads to some new 
		findings about the calibration accuracy and the near-field problem. 
		
			- 
			
Bilich, A., Larson, K. M., 2007, “Mapping the GPS 
			multipath environment using the signal-to-noise ration (SNR), Radio 
			Science, Vol. 42, No. 2, CI: RS6003.  
			- 
			
Flury, J., Gerlach, C., Hirt, C., Schirmer, U, 2009, 
			“Heights in the Bavarian Alps: mutual validation of GPS, levelling, 
			gravimetric and astrogeodetic quasigeoids”, Geodetic Reference 
			Frames, IAG Symposia, Vol. 134, pp. 303-308, Munich.  
			- 
			
Geiger, A., 1988, „Einfluss und Bestimmung der 
			Variabilität des Phasenzentrums von GPS-Antennen“, Mitteilungen des 
			IGP der ETH-Zürich, No. 43, Zurich, Institut für Geodäsie und 
			Photogrammetrie an der ETH-Zürich.  
			- 
			
Kraus, J.D., Marhefka, R.J., 2003, “Antennas: for 
			all Applications”, third edition, McGraw Hill. 
			Menge, F., 1998, „Zur Kalibrierung der Phasenzentrumsvariationen von 
			GPS-Antennen für die hochpräzise Positionsbestimmung“, Wiss. Arb. d. 
			Fachr. Verm., 247, University of Hanover. 
			Santerre, R., 1991, “Impact of GPS Satellite Sky Distribution”, 
			manuscripta geodaetica, Vol. 16, pp. 28-53.  
			- 
			
Schupler, B.R., Allshouse, R.L., Clark, T.A., 1994, 
			“Signal Characteristics of GPS User Antennas”, Navigation, 41(3), 
			pp. 277-295, Institute of Navigation.  
			- 
			
Wanninger, L., May, M., 2000, “Carrier Phase 
			Multipath Calibration of GPS Reference Stations”, Proceedings of the 
			13th International Technical Meeting of the Satellite Division of 
			the Institute of Navigation ION GPS 2000, Salt Lake City, Utah, USA. 
			 
			- 
			
Wübbena, G., Schmitz, M., Boettcher, G., 2006, 
			“Near-field Effects on GNSS Sites: Analysis using Absolute Robot 
			Calibrations and Procedures to Determine Corrections”, Proceedings 
			of IGS Workshop 2006 “Perspectives and Visions for 2010 and beyond”, 
			Darmstadt, Germany.  
			- 
			
Zeimetz, P., Kuhlmann, H., 2006, “Systematic effects 
			in absolute chamber calibration of GPS antennas”, Geomatica, 60/3, 
			pp. 267-274, Ottawa, Canadian Institue of Geomatics.  
			- 
			
Zeimetz, P., Kuhlmann, H., 2008, “On the Accuracy of 
			Absolute GNSS Antenna Calibration and the Conception of a New 
			Anechoic Chamber”. Proceedings of the FIG Working Week 2008, 14.-19. 
			June, Stockholm, Sweden.  
			- 
			
Zeimetz, P., Kuhlmann, H., Wanninger, L., Frevert, 
			V., Schön, S., Strauch, K., 2009, Ringversuch 2009, 7. 
			GNSS-Antennenworkshop, 19.-20. March 2009, Dresden, Germany.  
			
			http://tu-dresden.de/die_tu_dresden/fakultaeten/fakultaet_forst_geo_und_hydrowissenschaften 
			/fachrichtung_geowissenschaften/gi/aws09/7AWS09_07_Zeimetz.pdf 
			  
		 
		BIOGRAPHICAL NOTES  
		Mr. Philipp Zeimetz holds a diploma degree in geodesy from the 
		University of Bonn, Germany. He is a scientific assistant at the 
		Institute of Geodesy and Geoinformation of the University of Bonn. His 
		research is mainly focussed on the calibration of GPS-antennas.  
		Prof. Dr. Heiner Kuhlmann is full professor at the Institute of 
		Geodesy and Geoinformation of the University of Bonn. He has worked 
		extensively in engineering surveying, measurement techniques and 
		calibration of geodetic instruments.  
		CONTACT  
		Philipp Zeimetz 
		University of Bonn 
		Institute of Geodesy and Geoinformation  
		Nußallee 17 
		53115 Bonn 
		GERMANY 
		Tel. +49 228 733565 
		Email: zeimetz@igg.uni-bonn.de
		 
		Website: www.gib.uni-bonn.de
		 
		
		   |