Reconstructing Land Tenure Maps of Australia in 3D

Mohsen Kalantari Associate Professor of Geospatial Engineering School of Civil and Environmental Engineering

Australian Research Council (ARC) Project No 3

Reconstructing Land Tenure Maps of Australia in 3D

Validation rules for back-captured 3D survey plans (strata, building, stratum)

Partner

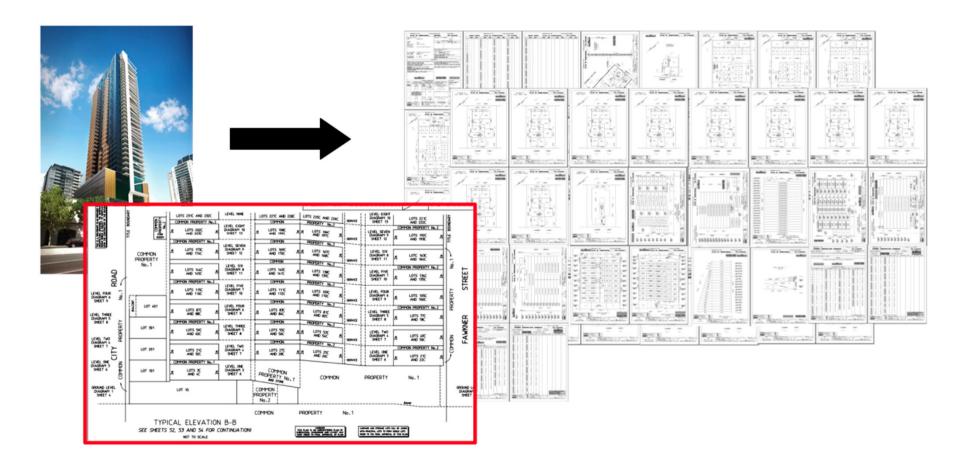
ICSM

Outcomes

Two higher degree graduates to work for ICSM members

Broader Impact

New knowledge that benefits Australia and Beyond



3D cadastre in practice (2012)

ARC Linkage project – No 1

- 1. Where would the 3D data come from?
- 2. What elements need to be included in a 3D cadastral model and how?
- 3. How best can we visualise 3D cadastral data?

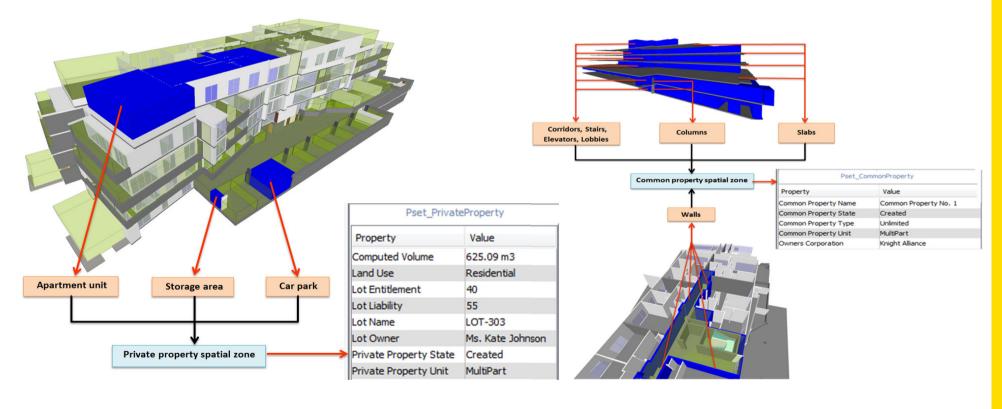


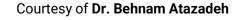
Investigators: Ian Williamson, Abbas Rajabifard, Mohsen Kalantari

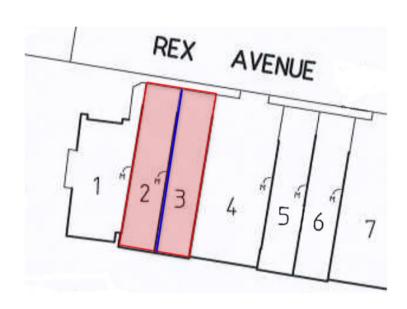
Where would the 3D data come from?

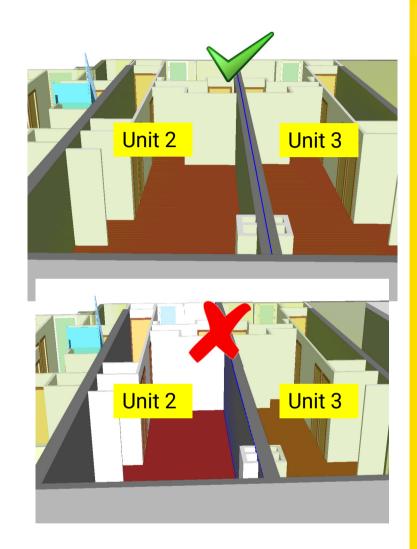
Design Stage (BIM)

Verification Stage (Laser Scanning)

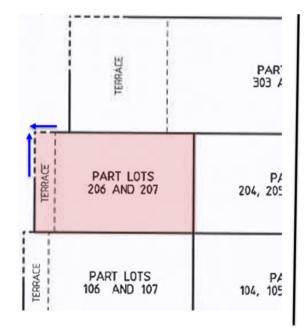


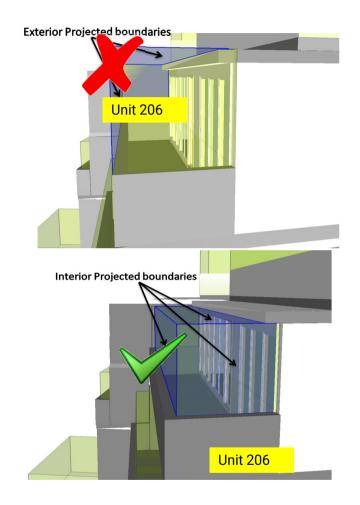



What elements need to be included in a 3D cadastral model and how?

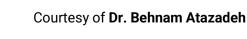


What elements need to be included in a 3D cadastral model and how?





DIGITAL TWIN

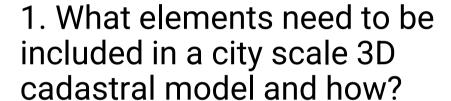

What elements need to be included in a 3D cadastral model and

how?

Where would the 3D data come from?

Device	Data Collection	Data Processing	Data Accuracy	Data Completeness
Device 1	More efficient	Comparable	19mm	More efficient
Device 2	More efficient	Comparable	34mm	More efficient
Device 3	More elaborate	More elaborate	7mm	More efficient

How best can we visualise 3D cadastral data?

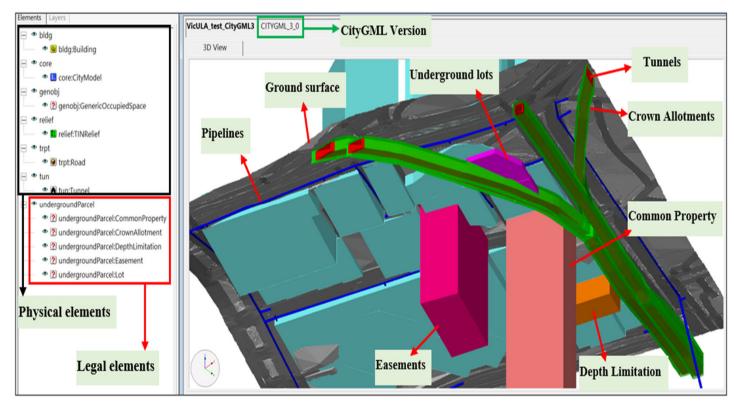


Source: https://www.spear.land.vic.gov.au/spear/pages/eplan/3d-digital-cadastre/3dprototype/prototype.html

ARC Linkage – No 2

2. How do you ensure the validity of a 3D cadastral model?

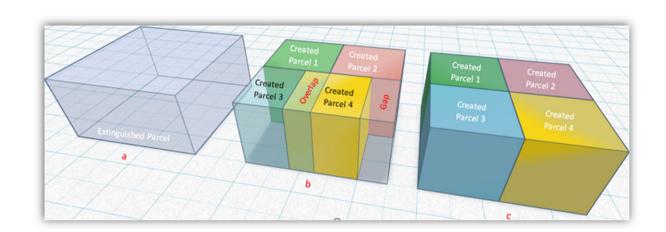
SURVEYING & MAPPING

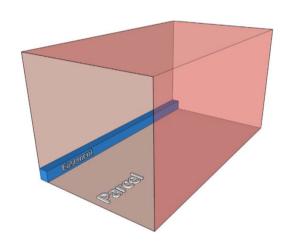


Investigators: Abbas Rajabifard, Mohsen Kalantari

DIGITAL TWIN & LAND TENURE ENGINEERING LAB DUNSW

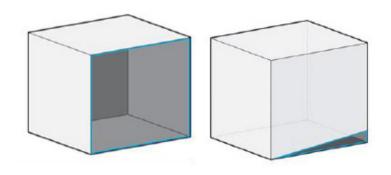
What elements need to be included in a city scale 3D cadastral model and how?

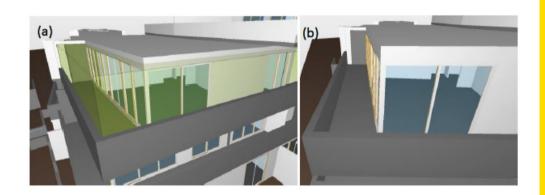




DIGITAL TWIN & LAND TENURE HIGHERING LAS SUNSW

How do you ensure the validity of the model? Legal

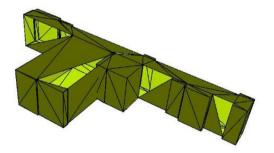




How do you ensure the validity of the model? Legal/Spatial

Watertightness

E.g. projected boundaries


DIGITAL TWIN

How do you ensure the validity of the model? Spatial

Validating spatial integrity

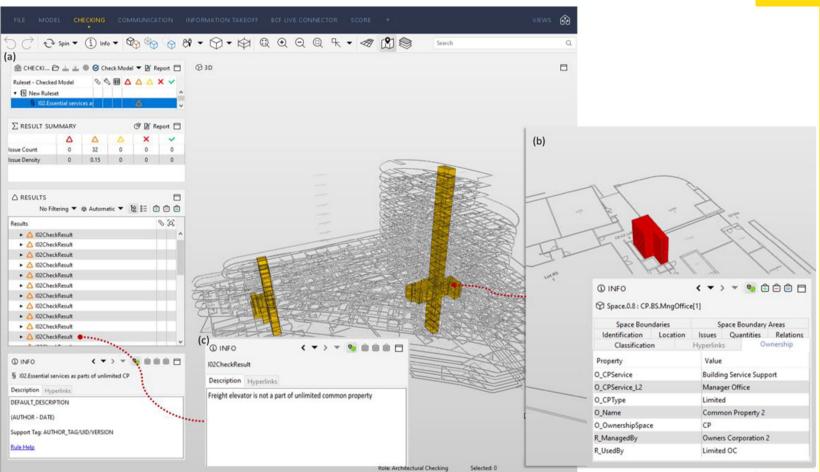
Polyhedron Basic Viewer


```
Internal Spatial Consistency Report...
Data Name: 4 self-intersected Flipped non-watertight.off
Data Type: 3D Polyhedral model consisted of triangles.
Checking vertices ...
Number of vertices: 86
Minimum and Maximum vertex in-degree: (3,10)
Checking edges ...
Number of edges and halfedges: (252,504)
Number of border edges: 12
Checking faces ...
A total number of 164 faces including:
164 trinagle(s), 0 quadrat(s), and 0 arbitrary face(s).
Minimum and Maximum face degree: (3,3)
Primitive Checks...
Number of nonplanar faces: 0
Self-intersection status: The 3D object is self-intersected.
Pairs of faces intersected:11
Number of collinearity detected: 0
Orientation status: The 3D object is not correctly oriented.
Advanced Check ...
Closure status: The 3D object is not Watertight!
Number of holes detected: 4
```

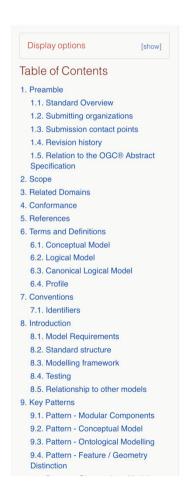

How do you ensure the validity of the model? Functional

The proportion of functional spaces (A1.1.1) for providing essential services* defined as part of unlimited CP (O1.2.3.1) to all functional spaces for providing the essential services

Indicator		Importance		
		OC expert	Total Avg.	
I01.Structural building components as parts of unlimited common property (CP)		5.00	4.55	
I02.Essential services as parts of unlimited CP	4.42	5.00	4.82	
I03.Composition of limited CPs to support the use of all lots in limited OC		5.00	4.82	
I04.Easement for services to secure lots' essential services	4.29	4.55	3.45	
I05.Lots holding memberships of the OCs managing CPs that provide services for their beneficial use	4.30	4.64	4.64	
I06.Occupiable lots delineated by building boundaries	4.36	4.70	4.82	
I07.Physical building elements used as boundaries between occupiable lot and CP	4.40	4.74	4.82	
I08.Physical building elements used as boundaries between unlimited and limited CP	4.38	4.75	4.45	
I09.An appropriate number of limited OCs to represent different usage of lots	4.33	4.73	4.27	
I10.Separate circulation in each CP solely used by each OC	4.32	4.60	3.82	
I11.Separate entry in each CP solely used by associated OC	4.27	4.47	3.55	
I12.Separate recreational and hygiene amenities in associated CP	4.26	4.35	3.64	
I13.Fairly allocation of lot liability proportional to its area		4.34	4.36	
I14.Fairly allocation of lot entitlement proportional to its area	4.31	4.31	4.36	
I15.Consistency in boundary location delimiting all occupiable lots with the same usage	4.32	4.33	4.55	
I16.Unobstructed paths from all occupiable lots to amenities of their CP	4.31	4.38	4.55	
I17.Unobstructed paths from all occupiable lots to building service support areas of their CP	4.30	4.41	4.55	
I18.Unobstructed paths from all occupiable lots to waste management areas of their CP	4.30	4.44	4.55	
I19.Unobstructed paths from all occupiable lots to their part lots	4.29	4.47	4.55	
I20.Easement of access to secure lots' unobstructed paths to their properties	4.28	4.50	4.55	
I21.Lot with parking as a part lot	4.21	4.38	2.45	
I22.Lot with storage as a part lot	4.13	4.31	2.55	



How do you ensure the validity of the model? Functional



Progress in practice (2022)

ICSM Conceptual Model for 3D Cadastral Survey Dataset Submissions

Intergovernmental Committee on Surveying and Mapping

Submission Date: 18/03/2022

Approval Date: <yyyy-mm-dd>

Publication Date: <yyyy-mm-dd>

External identifier of this document: https://linked.data.gov.au/def/csdm/2022

Internal reference number of this document: 21-CAD

Version: 1.0

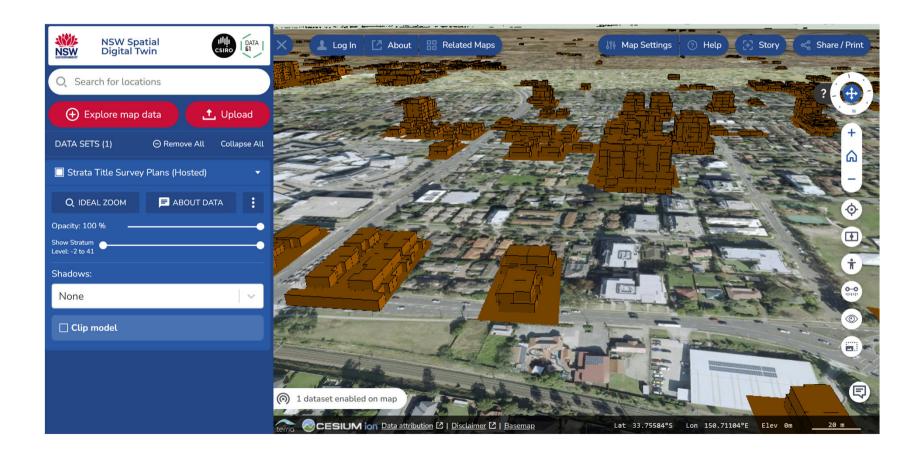
Category: ICSM Implementation Specification

Editors: Rob Atkinson

Contributors: Andrew Hunter, Byron Cochrane, Jeff Needham, Adrian White, Murray Dolling, Roger Fraser, Nicholas J. Car, Matthew Purss & Simon Opper

ICSM Conceptual Model for 3D Cadastral Survey Dataset Submissions

Copyright notice


[TBD]

Warning

DIGITAL TWIN & LAND TENURE ENGINEERING LAB GUNSW

Progress in practice (2024)

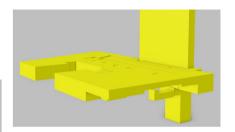
ARC Project No 3

How do you ensure the validity of the 3D CSDM? (georeferencing and alignment strata/stratum plans in NSW and building subdivisions in Victoria

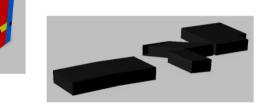
with digital twins and topographic features)

How do we ensure the interoperability of 3DCSDM with the design models? (IFC)

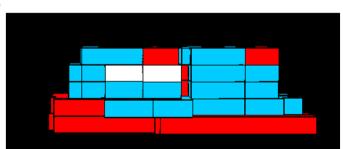
Investigators: Mohsen Kalantari, Sisi Zlatanova



Projects progress to date


A 3D CSDM profile vocabulary for NSW

Methodology for back - capturing stratum plans in NSW


Peter Hales

Claire Warren

Colour, Transparency and Size in Visualising 3D Digital Cadastres

ARC Project No 3

Reconstructing Land Tenure Maps of Australia in 3D

Validation rules for back-captured 3D survey plans (strata, building, stratum)

Partner

ICSM

Outcomes

Two higher degree graduates to work for ICSM members
 Broader Impact

New knowledge that benefits Australia and Beyond

Relevant SDGs

Thank You

Contact: mohsen.kalantari@unsw.edu.au