

Identifier-driven sharing and application mechanism based on primitive topographic features: An example of buildings

Presenter: Chi-Wen Chen

Department of Geomatics, National Cheng Kung University, Taiwan

Authors: Chi-Wen Chen, Jung-Hong Hong

Table of contents

Introduction

Achieving Cross-Domain Integration through Identifiers

Core Characteristics of Identifiers

Benefits of Integrating Spatial Units with Identifier

Inventory and Analysis of Identifier Systems for Buildings in Taiwan

Conclusion

Objectives

- GIS operates based on spatial units
- Establish a framework and develop an identifier system
- Enable cross-domain data to share a unified framework
- Facilitates Digital Twin development

3

Core Characteristics of Identifiers

Characteristics of an Identifier

Uniqueness

Each spatial object must have a unique identifier that cannot be duplicated.

Persistence

During the lifecycle of a spatial object, the identifier must remain unchanged. If it is modified, the change must be explicitly recorded.

The concept of SDI requires the establishment of an effective mechanism that can locate and retrieve various spatial objects through unique identifiers.

The design of the identifier system must have the capability to map identifiers from existing national systems.

(GREMEAUX N, 2011)

Example - National ID No

Uniqueness

Each person has a unique national ID number, ensuring no duplicates nationwide.

Persistence

A national ID number usually remains unchanged throughout a person's life.

It allows the government to trace records like healthcare, education, and taxes.

It is designed to integrate with other systems, such as health insurance cards, driver's licenses, and financial systems.

Design of Identifier Reference System

Database design behind the identifier

Inventory and Analysis of Identifier Systems for Buildings in Taiwan

Spatial Units & Identifier

Address

- Addition: Newly assigned addresses are named using extensions like 1, 2, etc.
- Merge: The merged numbers are reserved for future new buildings.
- Reorganization: A new set of address data is generated for the restructured area. To prevent duplicate identifiers, a reorganization mechanism resolves numbering conflicts caused by long-term changes.
- Modification: Residents can apply for partial address adjustments.

- Division: One building retains the original building number, while others are numbered sequentially after the last building number of the lot.
- Merge: The first building number before the merger is retained, while all other numbers are deleted and cannot be used.

Due to these update rules, maintaining a creation time version record is crucial.

BUILD_ID

- Build_ID is generated by recording the building's central point location using the TWD97 coordinate system and converting it into a 32-bit code.
- Coordinates change with the physical boundaries of the building, and the building code as an identifier also changes accordingly. However, the implementation focuses on the 3D building structure and does not specify whether historical data is recorded in the database.

0	1	2	3	4	5	6	7						
0	1	2	3	4	5	6	7	(187658.315, 2599366.865) (1R8K75NV65)					
8	9	10	11	12	13	14	15						
8	9	Α	В	С	D	E	F		坐標	平移	取到小數第1位(四捨五入)	編碼轉換	
16	17	18	19	20	21	22	23	E	187658.315		1876583	1R8K7	
G	Н	J	K	L	М	Ν	Ρ	N	2599366.865	2000000	5993669	5NV65	
24	25	26	27	28	29	30	31		Coordinatoo	Translation	Rounding to the first	32-hit	
Q	R	S	Т	U	۷	W	Х		Coordinates	Tansiation	decimal place	conversion	

Administrative region codes

	Administrative region	Taiwan Province	Yilan County	Jiaoxi Township	Baige Village		
Example 1	Administrative region codes	10	002	050	012		
	The total code	10002050012					
	Administrative region	Kaohsiung City	Gushan District	Shaochuantou Village			
Example 2	Administrative region codes	64	64 020 037				
	The total code		64 <u>000</u> 020037	Fill the blank sp with zeros.	bace		

Administrative region codes change typically due to the addition or reduction of regions and boundary adjustments.

Identifier System

Achieving Cross-Domain Integration through Identifiers

				Identifier	Spatial Unit	
				Administrative region codes	Administrative region	
				BUILD_ID	Building	
Data Lir	Building Number	Household				
				Address		
Data A Data B	Identifier Administrative region codes BUILD_ID Building Number	Spatial Unit Administrative region Building Household	Spatial Unit Framework	Spati Repres Dat	ally ented ta	
Data C	Address		Clear Specifications Produced and Maintained by authorized organization			
Cross-domain Tabular Data	Stand Ider	ardized ntifier	Forming the Core of Cross- Domain Operations in Digital Twin Systems			

Benefits of Integrating Spatial Units with Identifier

Represent the state at a specific time using a unique identifier

The spatial distribution of building uses

Represent the state at a specific time using a unique identifier

The change in the number of households from 2015 to 2021

The benefits of cross-domain association for spatial enabling

The spatial distribution of enterprises

The integration of enterprises' distribution and visibility analysis

Conclusion

Ensure cross-source data matching and maintain consistency.

Solution Temporality and Version Management

Manage identifier versions as spatial units change to prevent data inconsistencies.

Link virtual and real worlds through identifiers to ensure model accuracy and data integration.

Cross-Domain Collaboration & Data Value

Enhance data integration and decision support, promoting multi-domain applications.

Integrate cross-domain data with 3D spaces to drive smart city development.

Thanks!

Do you have any questions?

Chi-Wen Chen and Dr. Jung-Hong Hong

Dept. of Geomatics, National Cheng Kung University No. 1, University Rd., East Dist.,

Tainan City, Taiwan (R.O.C.)

Email: chiwen101089@gmail.com, junghong@mail.ncku.edu.tw

