

The Future of Urban Planning:

Blending Planning Expertise with Al Technology

Bradley Rasmusen CEO Sizztech

PLATINUM SPONSORS

Surveyors Australia

Council of Australi

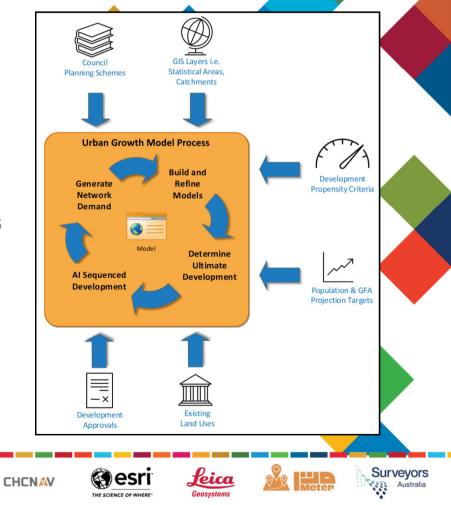
Brisbane, Assteria 6–10 April

Australian Government

Brisbane, Australia 6-10 April

Urban Growth Modelling Challenges

• Modelling urban growth is complex


WORKING

WEEK 2025

- Many inputs and many processes, as shown in this example
- Core requirement method to determine the development propensity of properties

AND Locate25

- Aligns to predicting the occurrence of Development Applications/Permits
- Why not use DA/Permits as input to Machine Learning Model to assist with determining propensity?

PLATINUM SPONSORS

Surveyors

Australia

Brisbane, Australia 6-10 April

Limitations of Development Applications/Permits data

Uneven mix of Residential DA/Permits vs Non-Residential DA/Permits

Typically 75% - 80% Residential Development

Typically 20% - 25% Non-Residential Development

- DA/Permits represent a small portion of all properties that can be developed
 - Typically 5% 10% of developable properties
- Normally do not contain DA/Permits that were refused or did not proceed Important data for ML analysis

PLATINUM SPONSORS

Brisbane, Australia 6-10 April

Analysis of Development Applications/Permits data Low num Items Range variation has small item count <60 Non-Residential GFA Range Analysis Residential Dwelling Range Analysis 500 2 0-500 11 1124 1000 3-5 3 500-1000 509 258 91 6 10 **Skewed weighting** 1500 5-10 1000-1500 1002 Large count with 59 25 10-25 11 2492 small range variation 1500-2500 26 25-50 4991 2500-5000 2509 50 50-75 **Representative Data** 10000 5000-10000 5076 148 Consistent count with 75-150 77 20000 good range variation 10000-20000 10577 500 152 150-500 96436 1292 20000 or More 20236 00 or More 515 100000 1000 Min Count **Outliers** Max Min Count Small count with large range variation >70,000 GFA Surveyors Geospatial Council of Australia Leica Meter esri Australia ORGANISED BY FIIG THE SCIENCE OF WHERE Australian Government

Brisbane, Australia 6-10 April

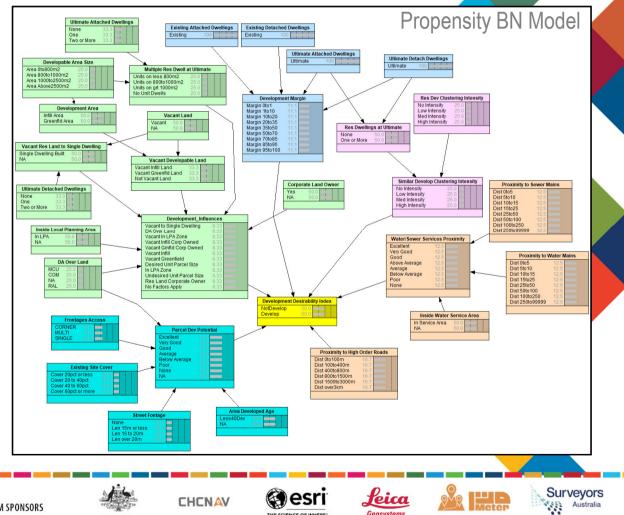
Given DA/Permits data limitations for machine learning...

Can we utilise an urban planner's knowledge to assist with determining development propensity?

PLATINUM SPONSORS

Leica

CHCNAV



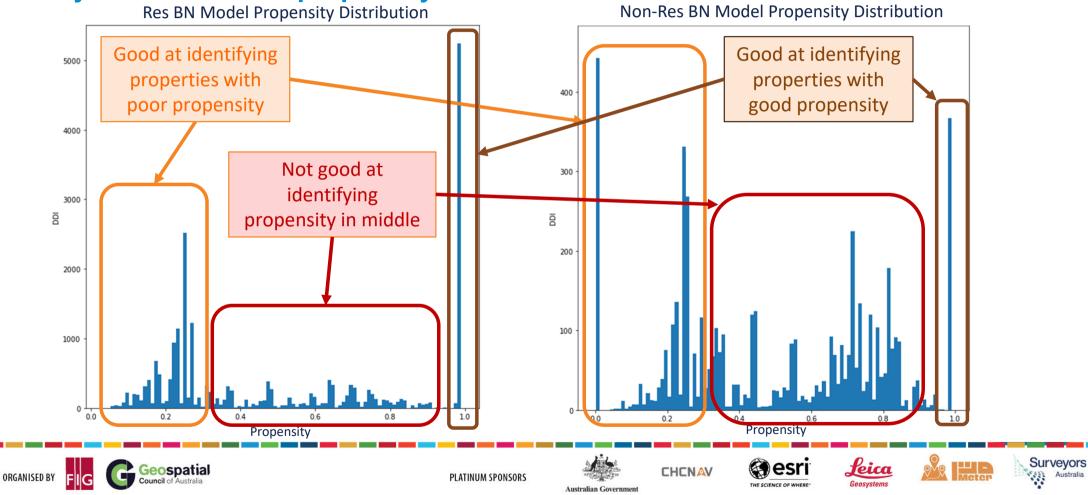
Brisbane, Australia 6-10 April

Utilise Bayesian Network Models

- Probabilistic graphical models with a clear schema, as shown in this example
- Commonly used for land use scenario modelling
- Studies show BN Models can produce good predictions from expert analysis
- "Codify" urban planner's knowledge of factors that influence development
- Use BN models to describe the propensity for a property to develop

PLATINUM SPONSORS

Australian Government



Brisbane, Australia 6-10 April

Analysis of BN Model propensity distribution

Brisbane, Australia 6-10 April

Given Urban Planner BN Model shortcomings...

AND Locate 25

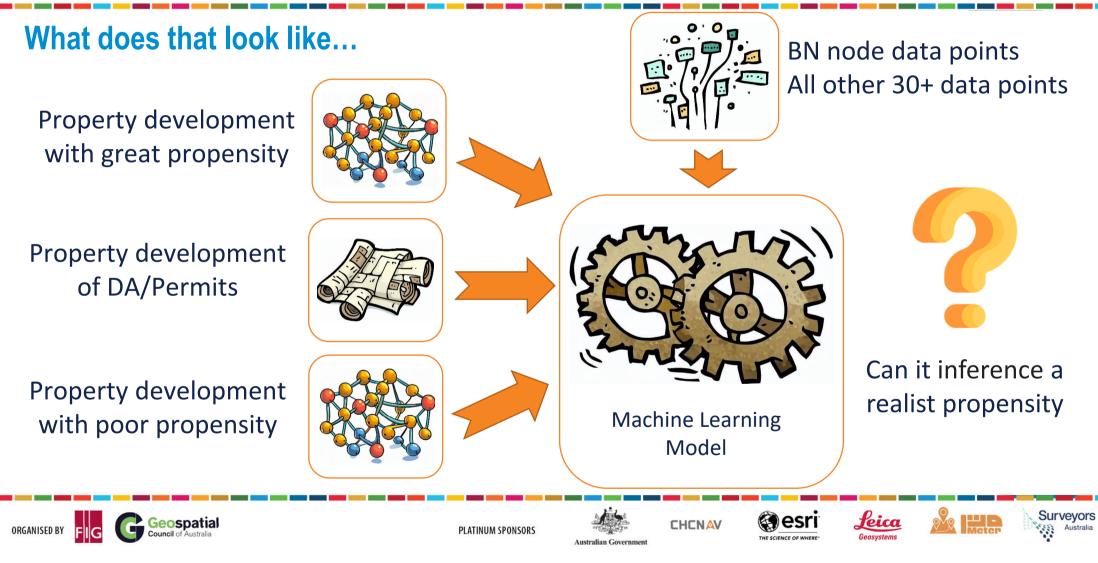
Could Machine Learning assist with determining a better propensity for the mid-section distribution? What if we combine BN Model data with the DA/Permit data?

WORKING

WEEK 2025

PLATINUM SPONSORS

Surveyors Australia



Brisbane, Australia 6-10 April

FI

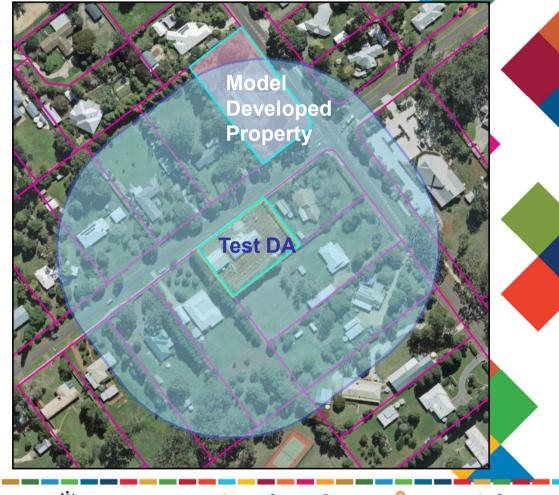
Brisbane, Australia 6-10 April

Testing the ML Model Prediction Performance

- Randomly remove 30% of the DA/Permits from the model Test DAs
- Test if the model developed a property nearby to a **Test DA** using ML propensity
- Property nearby must satisfy the following criteria:
 - Must be developable
 - Cannot be a property it was trained on
 - Must not be a DA/Permit
 - Must be within a certain distance of the removed Test DA
 - Must have a residential/non-residential land use that matches the land use of the removed **Test DA**

PLATINUM SPONSORS

Leica Geosystems



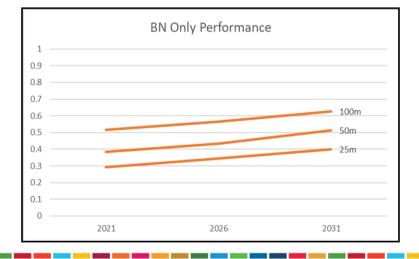
Brisbane, Australia 6-10 April

FI

Nearby Developed Property Example

- The property developed by the model is within 100m of the **Test DA** (removed from model)
- Treated as a successful prediction

PLATINUM SPONSORS



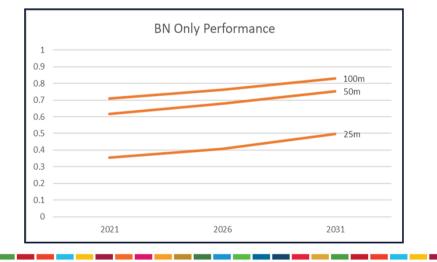
Brisbane, Australia 6-10 April

Non-Residential Testing Performance

BN Only Performance					
Projection Year from 2019	25	50m	100m		
2021	29.29%	38.38%	51.52%		
2026	34.51%	43.36%	56.64%		
2031	40.00%	51.30%	62.61%		

PLATINUM SPONSORS

Leica Geosystems



Brisbane, Australia 6-10 April

Residential Testing Performance

BN Only Performance					
Projection Year from 2019	25m	50m	100m		
2021	35.63%	61.78%	70.98%		
2026	40.71%	67.94%	76.08%		
2031	49.77%	75.34%	82.88%		

ML Performance					
25m	50m	100m			
30.67%	70.67%	78.67%			
37.25%	76.47%	84.31%			
46.90%	77.24%	86.21%			
	25m 30.67% 37.25%	25m 50m 30.67% 70.67%			

PLATINUM SPONSORS

Leica Geosystems

Brisbane, Australia 6-10 April

Conclusion

- Codifying Urban Planner's knowledge into BN Model produces good predictive performance for models
- Combining the BN Model with Machine Learning gives up to 10%-15% performance lift above the BN Model
- Good improvement in Non-Residential development predictions 63% to 75%

PLATINUM SPONSORS

Geosystems

