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ABSTRACT 

Highly accurate, image-based products have become essential tools in decision-making 

processes across various aspects of daily life. From the inspection of critical infrastructure to 

environmental monitoring applications, reality capture technologies combined with AI-based 

analysis is providing the fundamental information required for rapid and insightful decision 

making. How much detail from reality do we need to capture and how much is good enough? 

This paper embarks on a journey from 'Pixel to Perception,' exploring sub-millimeter image-

based 3D meshes to country-wide mapping applications based on Phase One’s cutting-edge 

technologies, discussing the premium quality and high accuracy of the results. 

1. INTRODUCTION 

For more than three decades, Phase One, a global company based in Copenhagen, has 

developed core imaging technologies and a range of digital cameras and imaging modules, 

setting new standards for image quality in terms of resolution, dynamic range, color fidelity, 

and geometric accuracy. 

 

Focusing on the geospatial industry, Phase One provides imaging solutions for UAV, aerial, and 

space platforms. Its product range includes cameras with global shutter technology, such as the 

P3 payload, capable of achieving sub-millimeter resolutions for inspection and damage 

detection of critical structures. For larger areas, the PAS 280 and PAS 150 camera systems 

support forestry applications and corridor mapping. For city modeling and country-wide 

mapping, PAS 880 and PAS Pana are the proper solutions respectively. Furthermore, Phase One 

cameras are integrated as the imaging component in hybrid-systems together with Lidar and 

Thermal sensors. The acquired data from these systems can be integrated with AI engines to 

address various dimensions and area sizes, enabling advanced feature extraction and data 

analysis. Whether mapping expansive urban landscapes or detecting fine-scale structural 

defects, these cameras exemplify the versatility and precision required for modern decision-
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making processes. Figure 1 shows the automatically extracted features, e.g. single trees and 

building roofs, using Geo-AI tools in Esri, based on the 3D dataset of city of Ljubljana, captured 

by PAS 880 camera system.  

 

Figure 1: Building and single tree extraction with Esri AI-tools based on the Digital Twin of Ljubljana generated 

by ArcGIS Reality Studio, captured by Phase One PAS 880 camera system. Data courtesy of Phase One, Esri, 

FlyCom and Surveying and Mapping Authority of Slovenia. 

 

1.1 Accuracy and Data Quality in Reality Capture 

Determining the required level of detail and accuracy in data acquisition involves both relative 

and absolute accuracy. Relative accuracy defines how closely the geometry, and the texture of 

a digital twin resemble the physical object. In simpler terms, it assesses the fidelity of the digital 

3D representation compared to the real-world counterpart. Absolute accuracy, on the other 

hand, pertains to the georeferencing of the digital twin, indicating how precisely the positioning 

and orientation of the final model align with a predefined (usually global) coordinate system. 

Photogrammetric techniques are inherently influenced by lighting conditions and surface 

texture, both of which significantly impact the quality of the final results. Low-texture surfaces 

and curved geometries present challenges for dense matching algorithms, as they lack sufficient 

visual features for robust reconstruction. To mitigate these limitations, high-resolution imaging 

and global shutter cameras play a crucial role in enhancing the signal-to-noise (S/N) ratio in the 

final outputs, such as point clouds, 3D meshes, and orthophotos. This study focuses on 

structural monitoring of concrete surfaces, which are considered as challenging surfaces, due 

to their low-texture characteristics. 

The Phase One GS120 camera, integrated with the P3 payload, has been used to account for 

varying lighting conditions. The study prioritizes relative accuracy by leveraging ultra-high-
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resolution imaging to achieve sub-millimeter precision, enabling automated crack detection on 

such surfaces. 

The effectiveness of AI-based feature extraction relies on three key factors: (1) the quality of 

input data, (2) the accuracy and reliability of output products, and (3) the strength of the AI 

engine, which utilizes deep learning models. In this study, advanced AI algorithms developed 

by Spotscale (www.spotscale.com) are integrated for defect recognition. These algorithms are 

applied in a range of structural monitoring scenarios, including bridge and dam inspections, as 

well as urban infrastructure and power plant assessments. 

1.2 Limitations of Manual Inspection Methods 

According to Knyazkov et al., (2019), traditional non-destructive testing (NDT) methods for 

assessing reinforced concrete structures are mainly in manual ways, which rely predominantly 

on visual assessments based on direct measurement on the physical object. These methods 

present challenges in balancing key factors, including time, efficiency, accuracy, reliability, 

safety, risk, and scalability 

Time-consuming and labor-intensive – Manual inspections are time-consuming and 

inefficient for large-scale infrastructure assessments. 

Prone to human error – The accuracy of visual assessments is dependent on the inspector’s 

expertise, leading to potential inconsistencies in defect identification. 

Safety risks – Inspectors often operate in hazardous environments, increasing the likelihood of 

safety risks. 

Limited access to critical areas – Structural constraints may prevent inspectors from 

thoroughly examining certain areas, resulting in undetected defects. 

 

Figure 2: Elevated safety risks and reduced measurement reliability due to accessibility challenges. 
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1.3 UAV-based Reality Capturing and AI 

Recent advancements in crack detection using Unmanned Aerial Vehicles (UAV) have 

demonstrated significant improvements in both efficiency and accuracy, compared to 

conventional inspection techniques. Over the past decades, studies have consistently shown that 

photogrammetry enhances structural monitoring precision and offers additional advantages 

over traditional methods (Valença et al., 2012). 

The limitations in current methods using imagery include environmental factors, such as 

moisture or debris, that can obscure cracks. Recommendations for overcoming these challenges 

include developing more robust imaging systems and integrating AI algorithms capable of 

compensating for environmental variability. 

Furthermore, lower-resolution imaging methods often fail to detect early-stage defects, 

delaying critical maintenance. In addition to the importance of accuracy in UAV-based 

imagery, one should consider increasing efficiency and productivity, for data acquisition of 

large areas or large objects, by using more automation in the workflow. 

The table below compares manual and automatic (AI-based) concrete crack detection, focusing 

on key factors like accuracy, efficiency, cost, and safety. 

Aspect Manual Detection Automatic (AI-Based) Detection 

Accuracy Subjective; prone to errors depends on expertise;  High accuracy; consistent results using AI and ML models. 

Speed/Efficiency Time-consuming; especially for large structures. Fast processing; large areas analyzed in less time. 

Cost High labor costs; requires frequent site visits. Higher initial setup cost; lower long-term operational cost. 

Safety High risk, especially for tall or remote structures. Safer; drones and remote sensing eliminate on-site risks. 

Coverage Limited by accessibility; some areas hard to inspect. Comprehensive; imagery drones cover hard-to-reach areas. 

Data Consistency Inconsistent due to human judgment. Highly consistent; reduces human bias in detection. 

Detail Level May miss micro-cracks; dependent on human eyesight. Detects micro-cracks with high-resolution imagery. 

Documentation Manual reports; time-consuming documentation. Automated reports; integrated data analysis. 

Scalability Difficult to scale for large infrastructures. Easily scalable with drone fleets and cloud processing. 

Environmental Impact Minimal; but frequent travel adds to emissions. Efficient; fewer trips needed, reducing carbon footprint. 

Real-Time Monitoring Not feasible; periodic checks only. Enables real-time monitoring and predictive maintenance. 

Technology Dependency Low; basic tools required. High; requires drones, AI software, and computing power. 

Table 1: Comparison Table: Manual vs. Automatic Concrete Crack Detection 

 

1.4 Standards and the Need for Sub-millimeter Accuracy  

The classification and assessment of concrete cracks are based on key parameters such as width, 

depth, length, and location, which determine their severity, impact on structural integrity, and 

the necessary repair actions. Various international standards and guidelines establish 

requirements for the design and production of concrete, such as Eurocode 2, while the 

inspection criteria for as-built concrete structures are often governed by national regulations. 

National standards define procedures for concrete damage investigation and typically specify 

imaging resolution, crack width thresholds, and data validation. According to established 

guidelines, including those set by the American Concrete Institute (2001), the European 

Committee for Standardization (2004), and the British Standards Institution (1997), crack width 

classification ranges from 0.1 mm to 1.0 mm. Achieving sub-millimeter accuracy in crack 

detection is therefore critical for ensuring compliance with these standards and enabling precise 

Pixel to Perception: Advancing Reality Capture for AI-Driven Decision Making (13514)

Mohsen Miri (Denmark)

FIG Working Week 2025 

Collaboration, Innovation and Resilience: Championing a Digital Generation

Brisbane, Australia, 6–10 April 2025



condition assessments of concrete structures. Table 2 presents the classification of crack 

severity levels based on crack width measurements. 

Crack Width Classification Significance Recommended Action 

< 0.1 mm Hairline / Micro-cracks Surface-level, aesthetic; may result from shrinkage. Monitor; no repair typically required. 

0.1 mm – 0.3 mm Fine cracks Minor exposure risks; may allow moisture ingress. Seal if exposed to aggressive environments. 

0.3 mm – 0.5 mm Moderate cracks May compromise durability; risk of reinforcement corrosion. Repair via sealing or epoxy injection. 

0.5 mm – 1 mm Major cracks Potential structural impact; durability concerns. Detailed assessment and structural repair. 

> 1 mm Critical cracks Structural integrity at risk; significant damage. Immediate repair or structural reinforcement. 

Table 2: Classification of crack width in different risk levels 

 

Sub-millimeter detection enables the identification of micro-defects that, if left unaddressed, 

can develop into critical structural issues. This underscores the necessity of adopting advanced 

imaging technologies for proactive maintenance, allowing for the precise localization and 

assessment of damaged areas requiring further destructive testing and eventual repairs. 

To achieve accurate crack width detection, according to Nyquist-Shannon Sampling Theorem, 

the ground sample distance (GSD) must be at least half the target crack width. For instance, 

detecting a crack width of 0.2 mm requires a pixel resolution of 0.1 mm to ensure reliable 

measurement and analysis. 

2. PHASE ONE UAV CAMERAS 

Phase One's P3 payload offers unparalleled imagery capabilities for infrastructure monitoring 

based on GS120 and iXM100 cameras. Equipped with the GS120 camera with Global Shutter 

(GS) technology and more than 120 mega pixel resolution, this camera captures images with 

highest quality even in challenging illumination situations. This capability is a key factor in 

success and completeness of automatic detection of sub-millimeter structural cracks using AI-

based algorithms. In addition to P3 payloads, Phase One offers the P5 camera, with 120 mega 

pixel resolution, which is suitable for sub-centimeter mapping and inspection applications, on 

fixed-wing drones. This article delves into the highest resolution with inspection cameras, e.g. 

the P3-GS120 camera.  

2.1 Phase One GS120 camera on the P3 payload 

The Phase One GS120 camera can be installed in any aircraft type (fixed-wing or copter) for 

high resolution imagery. This camera, which in this study is installed on the P3 payload, features 

a high dynamic range sensor based on Bayer Pattern technology, customizable lenses, and 

integration with drone systems for flexible deployment. 

Due to high resolution (120 mega pixel), high dynamic range and the Global Shutter (GS) in 

GS120 camera, this advanced imaging technology, can capture sub-millimeter details from 

approximately 10 meters distance in challenging conditions, such as low light, higher speed 

flight or extreme weather.  
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Sensor type CMOS Global Shutter 

High Dynamic range (dB) 80 

Pixel size (microns) 3.45 

Sensitivity (ISO) 200 

Global Shutter speed (sec) 1/16000 

Color options Color or Monochrome 

Resolution 12768 x 9564 

Max. field of view (°) 63 

Continuous frame rate (fps) Up to 5 

RAW file compression (IIQ) approx. 100MB 

Table 03: Phase One GS120 camera technical specifications (up) and the features (down) 

 

 

Figure 3: Phase One P3 payload for GS120 and iXM100 cameras on DJI-M350 

 

2.2 Data Capture 

High-resolution imaging using the P3-GS120 setup involves pre-planned flight paths or starting 

coordinates for drones or stationary setups for static structures. This ensures complete coverage 

and minimizes data gaps. The image collection for the needed accuracy is performed with a 

minimum of 80% overlap, with 7-10 meters distance to the object, ensuring that every defect is 

visible in at least 5 different images from different angles. 

3. PROCESSING WORKFLOW 

Measuring crack properties requires image representations with scale. The scale is achieved 

through projection of the crack pixels on a high accuracy geometry based on a photogrammetric 

3D mesh. To achieve this, after the lab calibration of the cameras at Phase One facilities, the 

photogrammetry workflow in Spotscale software is utilized. This step includes image 
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alignment, based on structure for motion (SFM) algorithm, followed by point cloud generation, 

and image rectification, 3D mesh generation, and finally, texturing the geometry with the 

original GSD. Parallel to this progress, a machine learning segmentation will generate the 2D 

image-based cracks. At the end the AI-based crack segments will be projected on the 3D mesh 

model. Advanced software tools optimize these steps for large datasets, ensuring high-quality 

outputs. 

 

Figure 5: Photogrammetry and AI workflow for high-quality AI-based crack detection 

 

 

3.1 High Dynamic Range and Intelligent Image Quality 

Phase One cameras keep the image content and quality within a significant high dynamic 

range (HDR) in its smartly compressed raw data format, called Intelligent Image Quality (IIQ) 

format. This format ensures exceptional image quality across various lighting conditions. 

Figure 6 shows the HDR capability of Phase One’s cameras to capture detailed information in 

both the brightest highlights and the deepest shadows, which is crucial for applications like 

aerial mapping and industrial inspections. This strong feature of Phase One images are across 

all its component cameras such as iXM-RS150, iXM-GS120, iXM-100MP and P5. 

 

    

Figure 6: Raw IIQ images of a roof and a façade of a building in a challenging illumination condition with high 

contrast between extremely bright and dark areas (left, raw image), and radiometrically adjustment via HDR 

capabilities (right, adjusted image) 
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Figure 4: To extract features in the multi surface objects, some parts of the object could be hidden in the shadow 

areas (left) and where high dynamic range helps an advanced radiometric adjustment (right) to balance these 

areas 

3.2 AI-based Analysis 

AI algorithms detect and classify cracks based on predefined criteria, such as width and 

orientation. Each single crack is interpreted as a separate object and represented either in 

projected raster on the geometry or as a 3D polyline along the center line (medial axis) of the 

crack. To achieve this geometry, the crack pixels are analyzed from several different viewpoints 

and compared before projected on the mesh. This analysis significantly enhances the robustness 

of the Spotscale approach. The ability to transform the pixels to 3D polylines (vectors) enables 

the possibility to automatically determine medium and max width over the crack length and 

establish the length in three dimensions. 
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Figure 5: 3D detection single cracks in the shadowed side of a silo construction in risk of damages 

3D mesh before crack detection  

3D mesh after crack detection  

22 m 

1.1 m 
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Figure 6: 3D mesh (up) and the results from crack detection (down), identifying classes of cracks (yellow), 

spallings (pink) and rust (purple), highlighting an emerging spalling 

 

3.3 Evaluation and Quality Control 

Quality control measurements include cross-referencing AI results with manual annotations and 

evaluating metrics such as precision, recall, and F1 scores to enhance reliability. For this 

evaluation, some single tracks were measured manually within an arm length, to be used as 

benchmarks. This assessment is important to illustrate if the high-quality and ultra-resolution 

images of Phase One cameras could be successfully modeled in the geometry of 3D textured 

mesh, followed by AI results in Spotscale. 
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3.4 Accuracy and Results 

Phase One’s P3-GS120 camera and Spotscale algorithms achieve exceptional accuracy in crack 

detection in comparison with smaller camera sensors. The results show that with a flight 

distance of 4-7 meters, the target GSD of 0.1 mm which is half size of the commonly expected 

standards is achieved.   

Metrics such as detection rate, false positive rate, and processing speed have been evaluated in 

a project under realistic circumstances. For example, the results based on the P3-GS120 camera 

achieved a 98.6% detection of the total crack length that was labelled by human labelling of the 

3D reconstruction. 

In contrast to manual inspection, there are virtually no limits in how many defects can be 

detected and presented by the software. In some concrete structures, thousands of individual 

cracks have been detected, measuring up to a kilometer in length. 

In another investigation, the P5 camera from Phase One is used for pavement inspection of 

roads. In this research, the importance of geometry for automatic crack detection can be seen, 

to differentiate the open cracks from the repaired (filled) cracks. 

3.5 Visual Illustrations 

Visual examples of detected defects are provided in Figure 5 and 6, showing annotated images 

and 3D models. Figure 7 shows that the crack layers can be projected on the 3D mesh geometry, 

both in raster or vector formats, showing the length and width of the damage. By applying the 

AI interpretation, concrete experts can predict future decay such as concrete loss from the 

surface (spallings). The Spotscale software further enables the expert to measure depth on 

spallings that occurred in a sub-mm accuracy depth representation. 

 

Figure 7: Results from crack detection, identifying classes of cracks in raster format(yellow), and representation 

of the crack axis in vector format (red line) 

Median Width: 1.15 mm 

Crack Length: 59.80 mm 
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Figure 8: Results from crack detection for pavement inspection of roads and airport areas, based on P5 camera, 

before (left) and after (right) crack detection 

 

4. CONCLUSION AND OUTLOOK 

The integration of sub-millimeter imaging and AI-based analysis represents a significant 

advancement in non-destructive visual structural monitoring. By delivering high accuracy and 

meeting industry standards, this technology reduces risks, enhances maintenance efforts, and 

facilitates informed decision-making, including further destructive testing. Future directions 

include expanding the application scope to new domains, enhancing AI algorithms for broader 

defect recognition, and developing more cost-effective solutions for large-scale 

implementation. 

Future research in AI-based crack detection should focus on developing advanced AI models 

capable of identifying a broader range of structural defects. Integrating data from multiple 

sensors, such as thermal imaging, radar, or ultrasonic sensors, can enhance deep learning 

models by providing additional information, thereby increasing the probability of accurate 

damage detection and improving overall reliability. 

 

To facilitate large-scale deployment, a market analysis across various asset types and 

applications is essential to optimize the implementation of these technologies, ensuring a more 

targeted and efficient approach in different structural monitoring scenarios. 

10 m 

AI 
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