
GeoDjango and LADM II: from Conceptual Model to Implementation

Jan VAN BENNEKOM-MINNEMA, The Netherlands

Keywords: LADM, LADM Implementation, Model Driven Architecture, Django,

GeoDjango, ORM

SUMMARY

The Land Administration Domain Model (LADM) is a platform independent, conceptual

information model describing the classes, attributes and associations related to administration

of rights, responsibilities and restrictions affecting land and their geometrical (geospatial)

properties. The (automatic) conversion and implementation of this conceptual model into a

platform specific model, i.e. a relational database, is faced with many challenges. The LADM

is currently under development as a multipart International Standard (i.e. LADM Edition II),

and one of its parts is proposed to be dedicated to the implementation of the LADM.

An experiment with the conversion of the LADM to an implementation in the open source

database PostgreSQL has been executed with Django and its extension GeoDjango. Django is

an open-source web development framework with an Object-Relational Mapper (ORM) which

has been utilised for this implementation. The primary goal of an ORM is to transmit data

between the object-oriented platform independent model and the underlaying database.

GeoDjango extends the ORM regarding querying and manipulating spatial data.

With the GeoDjango ORM, a substantial part of the LADM could, relatively straightforward,

be implemented in the database, with support for most of the LADM classes, attributes,

associations and constraints. An operational web framework was automatically generated, as a

basis for future web application development, in which the data manipulation (create, retrieve,

update, delete) is fully handled by the ORM based on LADM similar classes. As part of this

framework, a web-based graphical user interface can be generated to support user interaction

with the data.

GeoDjango and LADM II: from Conceptual Model to Implementation (11227)

Jan van Bennekom-Minnema (Netherlands)

FIG e-Working Week 2021

Smart Surveyors for Land and Water Management - Challenges in a New Reality

Virtually in the Netherlands, 21–25 June 2021

GeoDjango and LADM II: from Conceptual Model to Implementation

Jan VAN BENNEKOM-MINNEMA, The Netherlands

1. INTRODUCTION

The Land Administration Domain Model (LADM, ISO 19152:2012) is a conceptual and

platform independent information model in the Unified Modeling Language (UML), describing

classes, associations and constraints related to land administration. One of the goals of LADM

is to provide an extensible basis for the development and refinement of efficient and effective

land administration systems, based on a Model Driven Architecture (MDA). Countries and

organisations considering the design and development of a land information system based on

the LADM will need to convert and implement this conceptual model into a platform specific

model, such as a relational database management system. The LADM is currently under

development as a multipart International Standard [Lemmen, et al., 2020], referred to as LADM

Edition II, and Part 6 is proposed to be dedicated to the implementation of the LADM.

Object-Relational Mapping (ORM) plays a role in a Model Driven Architecture in separating

business and application logic from underlying platform technology [OMG, URL 6]. An ORM

facilitates the model-driven conversion of conceptual classes into implementation objects, such

as tables in a relational database. Research has been done regarding the automatic model driven

conversion of the LADM into implementation [Van Bennekom-Minnema, 2008; Hespanha et

al., 2008; Kalogianni et al., 2017, Alattas et al., 2018], identifying many challenges related to

the models and the tools used for modelling, conversion and implementation. This is the case

for the classes, attributes and associations, and even more for the constraints documented in the

LADM.

This paper describes an experiment with the implementation of LADM objects, based on an

ORM, facilitating the automatic implementation of classes, associations and constraints. The

components of the IT architecture, used for the experiment, are described in the next section 2.

Section 3 provides an overview of how the object-relational mapping process was configured

and used: the package structure, classes, attributes, associations, required changes in LADM,

constraints and testing with example instances. Then, in section 4, the configuration of the

model-driven graphical interface is discussed, followed by conclusions and recommendations

in section 5. Internet addresses (URLs), referring to the tools used, are provided after the

references.

GeoDjango and LADM II: from Conceptual Model to Implementation (11227)

Jan van Bennekom-Minnema (Netherlands)

FIG e-Working Week 2021

Smart Surveyors for Land and Water Management - Challenges in a New Reality

Virtually in the Netherlands, 21–25 June 2021

2. IT ARCHITECTURE COMPONENTS

There are many ORM tools available, e.g. Hibernate, SQLAlchemy, Sequelize, Entity

Framework. For this LADM implementation, the ORM as part of the Django Web Framework

was deployed. The other components are the PostgreSQL/PostGIS (database), Nginx (web

application server), and Docker (packaging and deployment of development, test and

production environment.

Django is an open-source web framework [Django, URL 1], based on the Python programming

language for building web applications [Python, URL 8]. Django is based on a model-template-

view software design pattern where the model component handles the data through the ORM,

the template component handles the presentation (i.e. the graphical user interface of the

application) and the view component handles the business logic and interaction between model

and template. Django’s ORM can handle geometry through GeoDjango, a geographic Web

framework [GeoDjango, URL 4], which uses opensource spatial libraries such as GEOS,

supporting the OpenGIS Simple Features for SQL, PROJ.4, supporting cartographic projections,

and GDAL, providing spatial functions. GeoDjango’s support for 3D data has its limitations

(e.g. regarding some 3D datatypes), in this implementation the focus has been on two-

dimensional data.

Django can operate with a number of relational databases, for example MySQL, Oracle, SQLite;

for this experiment the open source database PostgreSQL with extension PostGIS for spatial

data has been chosen, [PostGIS, URL 7].

Django requires a web application server to host the Django web application (including the

ORM) which is realised based on Nginx, open source software for web servers [Nginx, URL

5]. The deployment of all components into an operational web application has been realised

with open source software Docker, which facilitates and automates packaging and deploying

applications based on containers. Containers are standardized units of software, isolated from

and with few dependencies to its hosting environment/server [Docker, URL 2]).

3. OBJECT RELATIONAL MAPPING

An Object Relational Mapping tool specifies the relationship (i.e. the mapping) between objects

in the conceptual model, also referred to as the application model, and the implemented objects

in a relational database. Based on this mapping, the ORM will automatically generate and

execute the DDL (Data Definition Language) to define and create the database objects (e.g.

tables, primary, unique and foreign key constraints). Once the model is implemented in the

database, any change to the application model (new or changed classes, attributes or

associations) will lead to changes to the database, in Django referred to as migrations.

Dependent on the nature of changes, and the existing data in the database, these migrations can

be implemented fully automatically.

GeoDjango and LADM II: from Conceptual Model to Implementation (11227)

Jan van Bennekom-Minnema (Netherlands)

FIG e-Working Week 2021

Smart Surveyors for Land and Water Management - Challenges in a New Reality

Virtually in the Netherlands, 21–25 June 2021

Interaction with the data in the database is based on elements of the application model; for

example a developer of a land information system based on an ORM will interact with

objects/instances of classes of the application model, and the ORM takes care of automatically

generating the DML (Data Manipulation Language), i.e. the SQL to create, retrieve, update and

delete data instances. Typically, an ORM supports different relational databases, which makes

it relatively easy to switch the relational database; since the application functionality is based

on the conceptual model, with the ORM ‘translating’ this to the database.

The LADM classes and associations are captured in the UML tool Enterprise Architect (EA,

URL 3, Figure 1), which need to be provided in a Django application model. The Django model

is documented in text files, and while in principle it is possible to use the model transformation

possibilities in EA to generate these Django model text files, in this experiment they have been

created and entered manually.

3.1. Implement LADM Package Structure

The first step in this manual entry

of LADM classes into Django

model classes is to implement the

LADM packages, which have

been structured into Django file

system folders (also referred to as

“apps”):

ladm_administrative_pkg:

Administrative Package with

basic administrative unit and

rights.

ladm_party_pkg:

Party Package with parties in

those rights.

ladm_spatial_pkg:

Spatial Unit Package with the sub

package Surveying and Spatial

Representation.

ladm_config_pkg

The LADM code lists have been implemented in Django folder ladm_config_pkg (code lists

and other configuration classes).

The implementation of the Django model in the PostgreSQL database operates with prefixes in

the table name indicating the origin in the model, resp. “a_”, “p_”, “s_”, “c_” for 1)

administrative, 2) party, 3) spatial unit, surveying and representation, and 4) configuration and

settings.

Figure 1 LADM packages and classes

GeoDjango and LADM II: from Conceptual Model to Implementation (11227)

Jan van Bennekom-Minnema (Netherlands)

FIG e-Working Week 2021

Smart Surveyors for Land and Water Management - Challenges in a New Reality

Virtually in the Netherlands, 21–25 June 2021

For example: the LADM class LA_BAUnit is part of the LADM Administrative Package,

which is manually described as class BAUnit in the Django app ladm_administrative_pkg and

the text file “models.py” (See Figure 2). Django will automatically generate a table name for a

class, unless class meta parameter db_table is specified, in this case table a_ba_unit.

The code list LA_BAUnitType is specified as Django class BAUnitType and implemented as

database table c_ba_unit_type.

LADM UML Class

Django Model Class (models.py)
class BAUnit(VersionedObject):

 name = CharField(max_length=50, null=True)

 type = ForeignKey(BAUnitType)

 spatial_units = ManyToManyField(SpatialUnit)

 class Meta:

 db_table = 'a_ba_unit'

PostgreSQL Table DDL
CREATE TABLE public.a_ba_unit

(id integer NOT NULL

 DEFAULT nextval('a_ba_unit_id_seq'::regclass)

, name character varying(50)

, type_id integer NOT NULL

, CONSTRAINT a_ba_unit_pkey PRIMARY KEY (id)

, CONSTRAINT a_ba_unit_type_id_fk

 FOREIGN KEY (type_id)

 REFERENCES public.c_ba_unit_type

 (ladmtype_ptr_id)

)

Figure 2 Implementation class LA_BAUnit

With the Django package/application structure in place, the classes can now all be specified in

their models.py text files.

3.2. Implement LADM Classes and Attributes

LADM classes and Django application classes appear to be quite similar i.e. object-oriented.

Django supports inheritance of super classes, e.g. abstract super class VersionedObject and

LA_RRR. For example, the attributes RRR.share & description will be inherited by sub classes

Right, Restriction, and Responsibility.

Attributes can be specified with a range of datatypes (e.g. CharField, IntegerField,

DecimalField, DateField, TimeField, BooleanField, BinaryField). The optional ([0..1])

LA_BAUnit.name is modelled in the Django model as a text field BAUnit.name:

CharField(max_length=50, null=True).

If a unique identification of a class instance is not specified, Django will automatically generate

a primary key based on column “id” with a positive integer datatype, which is not explicitly

modelled in the application model.

GeoDjango and LADM II: from Conceptual Model to Implementation (11227)

Jan van Bennekom-Minnema (Netherlands)

FIG e-Working Week 2021

Smart Surveyors for Land and Water Management - Challenges in a New Reality

Virtually in the Netherlands, 21–25 June 2021

3.3. Implement LADM Associations

The LADM contains many attributes referring to codelists, for example: the datatype for the

attribute LA_BAUnit.type is in essence is a “one-to-many” relationship from LA_BAUnit to

codelist class LA_BAUnitType, and will therefore be modelled as datatype foreign key:

BAUnit.type: ForeignKey(BAUnitType), see Figure 2.

LADM also contains quite some “many-to-many” associations, which in Django can be

modelled as datatype ManyToManyField. For example: the association between LA_BAUnit

and LA_SpatialUnit is modelled with the attribute: BAUnit.spatial_units:

ManyToManyField(SpatialUnit), see Figure 2. This association is implemented in the database

as a table a_ba_unit_spatial_units (based on class meta parameter db_table). The association

is specified on the side of BAUnit and will, in the ORM, automatically be available as an

attribute on the class on the other side: SpatialUnit.ba_units. If a “many-to-many” association

has attributes, like for example: the attribute LA_PartyMember.share, the association will be

modelled as datatype ManyToManyField and a class (Figure 3).

LADM Classes

Django Classes
class Party(VersionedObject):

 type = ForeignKey(PartyType)

 name = CharField(null=True)

class GroupParty(Party):

 group_type = ForeignKey(GroupPartyType)

 party_members = ManyToManyField(Party,

 through='GroupPartyMember')

class GroupPartyMember(Model):

 group = ForeignKey(GroupParty)

 party = ForeignKey(Party)

 share = DecimalField(null=True)

Figure 3 Implementation class LA_PartyMember, LA_Party, LA_GroupParty

3.4. Changes to LADM

During the manual entry of classes in the Django model, a few issues where found. For example:

Django does not allow inheritance of attributes with the same name as an existing attribute,

as can be found in the cases of LA_Party and subclass LA_GroupParty (attribute: type) or

LA_Restriction and sub class LA_Mortgage. The chosen workaround for this issue has been to

rename the attributes of the subclass, e.g. the attribute LA_GroupParty.type is implemented as

GroupParty.group_type.

Another issue was related to the invariant that applies to LA_RRR which states “share must be

specified, unless this is meaningless for the specific type (of right)” which seems to contradict

with share_check being an attribute of class LA_RRR; in this implementation, share_check is

an attribute of classes RightType, RestrictionType, and ResponsibilityType and constraints

where made to only check the share if e.g. the RightType.share_check requires so (see next

section on constraints, Figure 5, row 4: “filter(share_check=True)”).

GeoDjango and LADM II: from Conceptual Model to Implementation (11227)

Jan van Bennekom-Minnema (Netherlands)

FIG e-Working Week 2021

Smart Surveyors for Land and Water Management - Challenges in a New Reality

Virtually in the Netherlands, 21–25 June 2021

New classes were specified in the Django model, partly inspired by experiences from previous

implementations: a class Person with subclasses NaturalPerson and NonNaturalPerson, and

an optional attribute Party.person (i.e. a foreign key referring to the new class Person), a

codelist SpatialUnitGroupHierarchyType (to assist with LA_SpatialUnitGroup.hierarchyLevel,

see example in Figure 11), and codelists GenderType, CurrencyType, NonNaturalPersonType.

Geometry in the LADM is handled in the Spatial Unit Package, for example through classes

LA_BoundaryFace (MultiSurface), LA_BoundaryFaceString (MultiCurve) and LA_Point, for

storing original measurements and transformed or adjusted final data. While these classes can

be successfully implemented for 2D data with GeoDjango, a new geometry attribute has been

added to SpatialUnit; this is also envisioned as a change in the LADM Edition II.

3.5. Implement LADM Constraints

As shown in Figure 2, attribute constraints like for example datatype, mandatory or optional,

and maximum length can be implemented as database constraints. Constraints concerning one

or more attributes of the same instance, also called tuple constraints, can be specified in the

application model and implemented as database constraints as well. For example: a check

constraint on the association class LA_PartyMember.share (Figure 4, row 1), which is specified

in a Django specific syntax resulting in database objects (gte=0 ~ greater-than-or-equal to

0, lte=1 ~ lower-than-or-equal to 1). Row 2 shows the implementation of a unique key, in

this case to avoid the same party being added more than once to a specific group.

Note that tuple constraints, defined on abstract classes, will not be implemented automatically

by the ORM, for example: check constraints regarding the attributes Oid, beginLifespanVersion

& endLifespanVersion of class VersionedObject, or regarding attributes of the class LA_RRR.

These will need to be specified as part of their sub-classes in the application model (for the

classes LA_RRR: LA_Right, LA_Restriction, LA_Responsibility), or alternatively, the abstract

classes can be specified as concrete (non-abstract), after which Django will implement these as

tables with check constraints.

No Description Django

1 Check constraint on

LA_PartyMember.share

(between 0 and 1)

class Meta:

 db_table = 'p_group_party_member'

 constraints = [CheckConstraint(check =

 Q(share__gte=0) | Q(share__lte=1)]

2 Unique constraint on

LA_PartyMembers

class Meta:

 db_table = 'p_group_party_member'

 unique_together = ['group', 'party’]

Figure 4 Implementation of LADM constraints in database

Constraints in the LADM are defined in the Object Constraint Language (OCL), and some of

these are assertions that concern multiple tuple/instances of the same class, or instances of other

classes, also referred to as cross-row and multi-table check constraints. This type of

constraint requires the execution of database queries, sometimes into the same table that is being

updated, which in many relational databases is not possible. A full implementation of this

constraint in the database would require custom development (programming) e.g. based on

GeoDjango and LADM II: from Conceptual Model to Implementation (11227)

Jan van Bennekom-Minnema (Netherlands)

FIG e-Working Week 2021

Smart Surveyors for Land and Water Management - Challenges in a New Reality

Virtually in the Netherlands, 21–25 June 2021

database triggers. An alternative to full database implementation of these assertions would be

to implement these (only) on the application side, in the Django model.

Consider for example Figure 5, row 1, “a Group must at least have two member parties”.

This is implemented as attributes ladm_constraints (list) and check_ladm_constraints (method)

for the class VersionedObject, which are inherited by the classes LA_Party and LA_GroupParty.

For the class LA_GroupParty, a ladm_constraint “check_two_party_members” is added

(GroupParty.party_members.count() >= 2). The attribute GroupParty.check_ladm_constraints

will be empty if all constraints pass or will provide the list of violated constraints. While it is

possible in the database to have a Group with less than 2 members, violating the constraint, it

would be easy to select these Group objects through the application model.

Another constraint “Sum of Group member shares must be 1” is implemented as

“check_total_member_shares” for GroupParty, see Figure 5, row 2. The constraint “a BAUnit

must have at least one RRR” is depicted on row 3.

Row 4 shows a constraint which requires some more coding based on ORM model classes:

“Sum of BAUnit shares must be 1 per Right Type”, which is implemented in the same

structure based on attributes ladm_constraints and check_ladm_constraints.

No Description Django

1 Group must have at least

two member Parties [2..*]

self=GroupParty -> check_two_party_members

self.party_members.count() >= 2

2 Sum of Group member

shares must be 1

self=GroupParty -> check_total_member_shares

GroupPartyMember.objects.filter(group=self)

 .aggregate(Sum('share'))['share__sum'] = 1

3 A BAUnit must have at

least one RRR [1..*]

self=BAUnit -> check_one_rrr

 self.rights.count()+self.restrictions.count()

 +self.responsibilities.count() >= 1

4 The sum of BAUnit shares

must be 1 per Right Type

(unless this is meaningless

for the specific type)

self=BAUnit -> check_share_one_for_right_type

make a distinct list of right types
right_types =

 RightType.objects.filter(right__ba_unit=self)

 distinct().filter(share_check=True)

for right_type in right_types:

 # loop through right types and calculate the sum of shares for each
 share_rights = self.rights.filter(type=right_type)

 .aggregate(Sum('share'))['share__sum']

 # validate the constraint

 if share_rrrs != 1:

 check_passed = False

Figure 5 Implementation of LADM constraints in application model

2

1
3

4

GeoDjango and LADM II: from Conceptual Model to Implementation (11227)

Jan van Bennekom-Minnema (Netherlands)

FIG e-Working Week 2021

Smart Surveyors for Land and Water Management - Challenges in a New Reality

Virtually in the Netherlands, 21–25 June 2021

3.6. Interact with LADM Instances

Annex C of ISO 19152 shows examples of instances which have been used to test data

manipulation via the application model (as opposed to SQL queries on the database). Consider

example C.5 Group Party (Figure 6, row 1-6):

Figure 6 Test application model with ISO 19152 Annex example

LADM C.5 Group Party

No Description Django

1 smiths_oven smiths_oven = BAUnit(name="Smith's Oven",

 type="basic_property_unit")

2 smiths_place

smiths_place = SpatialUnit(label="Smith's Place",

 address="1, Memory Lane")

area = AreaValue(size=1000, type="surveyed_area")

smiths_place.areas.add(area)

3 associate smiths_oven

with smiths_place

smiths_oven.spatial_units.add(smiths_place)

4 john, mary, joe

smiths_oven_users

john = Party(type="natural_person", name="John")

mary = Party(type="natural_person", name="Mary")

joe = Party(type="natural_person", name="Joe")

smiths_oven_users = GroupParty(

 name="Smith's Oven Users",

 type="group",

 group_type="partnership")

5 Associate john, mary, joe

with smiths_oven_users

smiths_oven_users.party_members.add(john, mary, joe)

6 Create right for

smiths_oven_users to

smiths_oven

group_ownership=Right(type="ownership"),

 ba_unit=smiths_oven,

 party=smiths_oven_users)

7 Query all BAUnit

instances

all_baunits = BAUnit.objects.all()

all_baunits.count() -> 52

8 Query BAUnit by primary

key and get its

spatial_units

baunit = BAUnit.objects.get(pk=11)

print(baunit) -> Smith's Oven [11]

baunit.spatial_units.count() -> 1

baunit.spatial_units.all() ->

<QuerySet [<SpatialUnit: Smith's Place>]>

9 Query BAUnit instances

where name starts with

“Gaia”

baunits = BAUnit.objects.filter(name__startswith="Gaia")

baunits.count() -> 6

print(baunits) ->

<QuerySet [<BAUnit: Gaia Grazing Grounds [10]>, <BAUnit:

Gaia Lodge [15]>, <BAUnit: Gaia Social Centre [16]>,

<BAUnit: Gaia Subnet [23]>, <BAUnit: Gaia Fuel Station

Protection Area [34]>, <BAUnit: Gaia Fuel Station

[35]>]>

GeoDjango and LADM II: from Conceptual Model to Implementation (11227)

Jan van Bennekom-Minnema (Netherlands)

FIG e-Working Week 2021

Smart Surveyors for Land and Water Management - Challenges in a New Reality

Virtually in the Netherlands, 21–25 June 2021

All instantiations are done based on classes of the application model: for example: create

BAUnit “Smith’s Oven” and corresponding SpatialUnit “Smith’s Place”; create a GroupParty

“Smith’s Oven Users” consisting of Party John, Mary and Joe; and create an “ownership” Right

for this group.

After instantiating the Annex C examples, the records can be queried through the application

model classes, see some example in Figure 8, row 7-9).

4. MODEL DRIVEN GRAPHICAL USER INTERFACE

Once the Django application model is

defined in the “models.py” text files,

the ORM will take care of managing

the objects in the relational database, as

wells as the data manipulation (as

shown in Figure 6). Based on the

model, Django can also generate a

web-based graphical user interface

(GUI), with user authorisation and

authentication, to maintain a choice of

the LADM classes, for example the

code lists.

By adding one line per class in the

“admin.py” text file; simple web pages

are created for viewing and

maintaining the data. See the GUI

generated for codelist class

LA_GroupPartyType in Figure 7.

More complex GUIs can be created with a few more lines in “admin.py”, for example to build

a master-detail page for a BAUnit and its Rights. Figure 8 shows the content for the admin.py

file:

1. first the detail section for Right and its attributes (fields) is defined,

2. then the master section for BAUnit, followed by

3. a call to the section for rights (RightInline), and then finally,

4. informing Django that this should be part of the Admin GUI (admin.site.register).

Text file ”admin.py”:
admin.site.register(GroupPartyType)

Django Administration GUI:

Figure 7 Example of generated GUI for GroupPartyType

GeoDjango and LADM II: from Conceptual Model to Implementation (11227)

Jan van Bennekom-Minnema (Netherlands)

FIG e-Working Week 2021

Smart Surveyors for Land and Water Management - Challenges in a New Reality

Virtually in the Netherlands, 21–25 June 2021

1) class RightInline(admin.TabularInline):
 model = Right

 readonly_fields = ('oid', 'begin_lifespan', 'end_lifespan')

 fieldsets = [

 (None, {'fields': ['begin_lifespan', 'end_lifespan']}),

 (None, {'fields': [('type', 'party','share')]}),]

2) class BAUnitAdmin(admin.ModelAdmin):

 readonly_fields = ('oid', 'begin_lifespan', 'end_lifespan',)

 search_fields = ['name']

 formfield_overrides = {

 models.TextField: {'widget': forms.Textarea(attrs={'rows': 2}},

 }

 fieldsets = [

 (None, {'fields': [('oid', 'begin_lifespan', 'end_lifespan')]}),

 (None , {'fields': [('type', 'name'), 'remark']}),

 #(None , {'fields': ['remark']})]

3) inlines = [RightInline]

4) admin.site.register(BAUnit, BAUnitAdmin)

Figure 8 Example of settings in admin.py text file for BAUnit and Rights

Figure 9 shows the GUI, generated based on the settings in the admin.py in Figure 8, in this

case showing the rights in the example in Annex C.31 of ISO 19152.

Figure 9 Example of generated GUI for BAUnit and Rights

GeoDjango and LADM II: from Conceptual Model to Implementation (11227)

Jan van Bennekom-Minnema (Netherlands)

FIG e-Working Week 2021

Smart Surveyors for Land and Water Management - Challenges in a New Reality

Virtually in the Netherlands, 21–25 June 2021

Before, in Figure 6, row 9, a query is shown, executed through the ORM python interface,

filtering all BAUnit instances where its name starts with “Gaia”. The file admin.py (in Figure

8) has a setting search_fields=[name], which will generate a search field, allowing to execute

a similar query through the GUI (Figure 10).

Figure 10 Query BAUnit instances in the GUI where name

starts with “Gaia

Figure 11 Example of custom developed Django Web

application page for LADM class

LA_SpatialUnitGroup

Note that Django’s Admin is recommended for use as an organization’s internal management

tool for class instances and is not intended for building the entire front-end web application

available to all users. See Figure 11 for an example of a custom-developed Django Web

application page, based on GeoDjango application model and Leaflet (open-source library for

creating interactive web maps), to list and maintain the class LA_SpatialUnitGroup, including

geometry.

GeoDjango and LADM II: from Conceptual Model to Implementation (11227)

Jan van Bennekom-Minnema (Netherlands)

FIG e-Working Week 2021

Smart Surveyors for Land and Water Management - Challenges in a New Reality

Virtually in the Netherlands, 21–25 June 2021

5. CONCLUSIONS AND RECOMMENDATIONS

With the components as described in section 2, the environment can be (re-)deployed with a

simple (docker) command which then 1) creates the containers GeoDjango, PostgreSQL

database and Nginx web application server, 2) migrates and links the application model classes

to the PostgreSQL database objects, 3) loads the code lists (ISO 19152 Annex J) and the

example data (ISO 19152 Annex C) through the object-relational mapper (ORM).

ISO 19152 Annex A describes how the conformance of an implementation of LADM classes,

attributes and associations can be assessed: i.e. Level 1, for only the basic classes, Level 2, for

basic and common classes, or Level 3 for all LADM classes. With the GeoDjango ORM a Level

3 conformance could be reached, except for specific 3D geometry that Django does not support.

Therefore, the utilisation of an ORM for this experiment with the implementation of LADM is

deemed successful. After manually specifying the LADM classes as application model classes

in the ORM, an automatic implementation of the classes as tables in the underlying database

can be realised. Both the database object creation and the data manipulation (i.e. create, retrieve,

update, delete) is handled fully though application classes and objects; the ORM generates the

required SQL regarding the database objects and records. Based on the application model,

(Geo)Django also automatically generates a web based graphical user interface to support data

manipulation.

Further research is recommended and could be made on: 1) creating and testing a full

implementation of LADM II with an (GeoDjango) object-relational mapper - possibly

contributing to Part 6 of LADM II; 2) the generation of a simple web graphical user interface

to manipulate all the LADM objects; 3) the use of generating the Django application model

from the LADM UML (in the tool Enterprise Architect); 4) the approach to implementing all

(OCL) constraints in LADM; 5) the implementation of abstract class VersionedObject; and 6)

the 3D capabilities and limitations of GeoDjango.

GeoDjango and LADM II: from Conceptual Model to Implementation (11227)

Jan van Bennekom-Minnema (Netherlands)

FIG e-Working Week 2021

Smart Surveyors for Land and Water Management - Challenges in a New Reality

Virtually in the Netherlands, 21–25 June 2021

REFERENCES

• Abdullah Alattas, Peter van Oosterom, Sisi Zlatanova (2018) Deriving the Technical

Model for the Indoor Navigation Prototype based on the Integration of IndoorGML and

LADM Conceptual Model, In: Proceedings of the 7th Land Administration Domain

Model Workshop, Zagreb, pp. 24

• Van Bennekom-Minnema, J. (2008). The Land Administration Domain Model 'Survey

Package' and Model Driven Architecture, Master's thesis, GIMA (TUD, UT-ITC, UU,

WUR), pp. 199, 2008

• Eftychia Kalogianni, Efi Dimopoulou, Wilko Quak, Michael Germann, Lorenz Jenni,

Peter van Oosterom (2017) INTERLIS Language for Modelling Legal 3D Spaces and

Physical 3D Objects by Including Formalized Implementable Constraints and Meaningful

Code Lists, In: ISPRS International Journal of Geo-Information, MDPI AG, 6(10), pp. 319

• Hespanha J.P, Van Bennekom-Minnema, J., Van Oosterom, P.J.M., Lemmen, C.H.J.

(2008). The model driven architecture applied to the Land Administration Domain Model

version 1.1 with focus on constraints specified in the object constraint language, in

Proceedings from FIG Working Week - Integrating Generations, Stockholm, Sweden.

Federation International des Géomètres, June 2008, pp. 1-19

• Chrit Lemmen, Peter van Oosterom, Eva-Maria Unger, Eftychia Kalogianni, Anna

Shnaidman, Abdullah Kara, Abdullah Alattas, Agung Indrajit, Katherine Smyth, Aurélie

Milledrogues, Rohan Bennett, Peter Oukes, Hans-Christoph Gruler, Daniel Casalprim,

Golgi Alvarez, Trias Aditya, Ketut Gede Ary Sucaya, Javier Morales, Marisa Balas, Nur

Amalina Zulkifli, Cornelis De Zeeuw (2020) The land administration domain model:

advancement and implementation, In: Proceedings of the Annual World Bank Conference

on Land and Poverty, Washington DC, pp. 28

INTERNET ADDRESSES (URLS)

The following URL's have been referred to in this paper; all URL's were checked and

available at March 24, 2021.

1. Django, a Python Web framework, https://www.djangoproject.com.

2. Docker, packaging and deployment of applications, https://www.docker.com.

3. Enterprise Architect, a modelling tool for business, software and systems,

https://sparxsystems.com/.

4. GeoDjango, a geographic Web Framework,

https://docs.djangoproject.com/en/3.1/ref/contrib/gis.

5. Nginx, open source web server, https://www.nginx.com.

6. OMG, MDA - The Architecture of Choice for a Changing World,

https://www.omg.org/mda.

7. PostGIS, a spatial database extender for PostgreSQL object-relational database,

https://postgis.net.

8. Python, programming language, https://www.python.org.

GeoDjango and LADM II: from Conceptual Model to Implementation (11227)

Jan van Bennekom-Minnema (Netherlands)

FIG e-Working Week 2021

Smart Surveyors for Land and Water Management - Challenges in a New Reality

Virtually in the Netherlands, 21–25 June 2021

https://www.djangoproject.com/
https://www.docker.com/
https://sparxsystems.com/
https://docs.djangoproject.com/en/3.1/ref/contrib/gis
https://www.nginx.com/
https://www.omg.org/mda
https://postgis.net/
https://www.python.org/

BIOGRAPHICAL NOTES

Jan van Bennekom-Minnema obtained and MSc in Geographical Information Management

and Applications in 2008 from University of Utrecht. He is a consultant for COWI Denmark,

working on international Land Administration and Spatial Planning projects on database and

web application design & development, spatial data analysis, mobile device-based field data

collection.

CONTACTS

Mr Jan van Bennekom-Minnema

Land Administration, GIS and IT Specialist

COWI A/S

Parallelvej 2,

Kongens Lyngby,

2800 Denmark

Email: jvb@cowi.com

Website: www.cowi.com

GeoDjango and LADM II: from Conceptual Model to Implementation (11227)

Jan van Bennekom-Minnema (Netherlands)

FIG e-Working Week 2021

Smart Surveyors for Land and Water Management - Challenges in a New Reality

Virtually in the Netherlands, 21–25 June 2021

mailto:jvb@cowi.com
http://www.cowi.com/

