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SUMMARY  

 

Nowadays Wi-Fi fingerprinting is a popular method for indoor positioning with smartphones. 

It is based on static RSSI (Received Signal Strength Indicator) measurements of the surrounding 

Access Points (APs) at reference points with known coordinates in the training phase. In this 

work, static training measurements are completely not foreseen as they are very time consuming 

and thus labour intensive. In contrast, waypoints are defined along the users’ trajectories and 

the training phase is carried out kinematically while walking along and passing by. Kinematic 

measurements, however, pose much greater challenges than the usual static or stop-and-go 

measurements. In the experiments the Wi-Fi RSSI were measured with three different 

smartphones kinematically along two trajectories that started in front of the entrances of an 

office building leading through the ground floor and ending in the courtyard of the building. It 

could be shown that the results can vary significantly depending on the smartphone used, which 

is mainly caused by the duration of a Wi-Fi RSSI scan. This scan duration depends of course 

on the number of visible APs which was very different for the individual smartphones. The 

results of the position determination showed deviations from the ground truth of about 2 to 5 m, 

which is only slightly worse than with static training measurements. The big advantage is that 

no static training measurements but continuous system training is performed. 

 

KURZFASSUNG  

 

WLAN Fingerprinting ist heutzutage ein populäres Verfahren für die Indoor-Positionierung mit 

Smartphones. Dieses Verfahren basiert auf der statischen Messung von Signalstärken, den RSSI 

(Received Signal Strength Indicator), der umliegenden Access Points (APs) an den koordinativ 

bekannten Referenzpunkten in der Trainingsphase. In dieser Arbeit werden keine statischen 

Trainingsmessungen vorgenommen, da sie sehr zeitaufwendig und arbeitsintensiv sind. Im 

Gegensatz dazu werden Wegpunkte entlang der Trajektorien des Nutzers definiert, an denen 

die Trainingsmessungen kinematisch beim Vorbeigehen ausgeführt werden. Kinematische 

Messungen stellen jedoch eine wesentlich größere Herausforderung dar als die üblichen 

statischen bzw. Messungen im Stop-and-Go Modus. In den Experimenten wurden die WLAN-

Signalstärken mit drei unterschiedlichen Smartphones kinematisch entlang von zwei 

Trajektorien, die vor den Eingängen eines Bürogebäude starten und durch das Erdgeschoß 

führen und im Hof des Gebäudes enden, gemessen. Es konnte gezeigt werden, dass je nach 



 

verwendetem Smartphone die Ergebnisse stark variieren können, was im wesentlichen auf die 

Dauer eines WLAN-Scans zurückzuführen ist. Diese Dauer hängt natürlich von der Anzahl der 

sichtbaren APs ab und war sehr unterschiedlich für die einzelnen Smartphones. Die Ergebnisse 

der Positionsbestimmung ergaben Abweichungen von der wahren Position von rund 2 bis 5 m, 

was nur geringfügig schlechter als bei statischen Trainingsmessungen ist. Der große Vorteil ist 

dabei, dass kein statisches Training erforderlich ist und kontinuierliches Systemtraining 

ausgeführt wird.  
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1. INTRODUCTION 

 

For numerous smartphone applications, such as Location Based Services (LBS), it is important 

to know the current location of the user. Indoor applications are found, for example, in shopping 

malls, hospitals, airports, office buildings and factories. As there is wireless Internet in almost 

every public building today, measuring Wireless Fidelity (Wi-Fi) signals is the most popular 

method to determine the position of a smartphone user (see e.g. Liu et al., 2007; Vanson Bourne, 

2016). There are several approaches for using the measured Received Signal strength Indicator 

(RSSI). In this work Wi-Fi location fingerprinting is the selected technology. For fingerprinting 

two different phases have to be distinguished, i.e., the off-line training phase to establish a 

database of RSSI values in the area of interest and the on-line positioning phase where the 

current RSSI measurements are used to obtain the users’ location (Fang et al., 2008; 

Khalajmehrabadi, 2016). In this study, the static training phase which requires measurements 

on a high number of reference points in the area of interest creating high workloads is omitted, 

but system training is performed from kinematic measurements along the trajectories from the 

start point to the users’ destination. 

 

The paper is organized as follows: In section 2 the creation of the fingerprinting radio map with 

three different interpolation techniques is analyzed and the most suitable one selected. Section 3 

describes the characteristics of the test area and smartphone specifications used in the 

experiments. The conducted analyses and major results are presented in section 4 followed by 

a discussion of the results in section 5. Finally, conclusions are drawn in section 6.  

 

2. CREATION OF A FINPRINTING RADIO MAP 

 

The RSSI values in the fingerprinting database are used to calculate the so-called radio map 

using interpolation approaches. It is a map that maps the RSSI of a Wi-Fi Access Point (AP) in 

a specific area. For the interpolation the natural neighbour interpolation is most commonly used 

(see e.g. Ledoux, and Gold, 2005) whereby Voronoï diagrams and Delaunay Triangulations are 

applied (Fortune, 2004; Lee and Han, 2012). The propagation of Wi-Fi signals, however, is 

influenced by different effects, such as short- and long-time signal variations and fluctuations, 

which cause problems when creating a radio map. Since indoor environments contain many 

different physical objects, it is very difficult to model these effects accurately. Nevertheless, 

there are some propagation models that take these effects into account, such as the empirical 

one-slope model, which is based on the principle of free space attenuation, and the semi-

empirical multi-wall model, which takes into account the attenuation properties of existing 

walls between an AP and the user. Furthermore, there are Ray Launching and Ray Tracing, 
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which are deterministic propagation models in which the effects of physical propagation, i.e., 

absorption, refraction and reflection, are modelled using objects (Katircioğlu et al., 2011; 

Retscher and Tatschl, 2017). Thereby the basis for the model is a digital plan of the measuring 

area, in which all walls and coordinates of the APs are contained (Roos et al., 2002; Wang et 

al., 2011). The advantage of such a radio map creation is that no RSSI measurements would be 

needed and the map can be changed more easily if something changes in the Wi-Fi 

infrastructure (Cavalieri, 2007). The main disadvantage of such a radio map creation, however, 

is that the map is not based on the measured RSSI in the environment and thus cannot reflect 

the RSSI distribution in detail. Hence, RSSI measurements are usually performed in the 

fingerprinting training phase. The radio map depicted in Figure 1 is based on an empirical 

model of measured RSSI from a kinematic survey. In general, the size of the data set of a radio 

map depends on the grid size and the number of APs whereby the key elements are the number 

and distribution of the known reference points on which the RSSI measurements are carried out 

in the training phase. Between the reference points the RSSI values and distribution need to be 

interpolated which is decisive for the later accuracy of positioning. The closer the grid reference 

points are, the higher the resolution of the radio map. For the radio map in Figure 1 the raster 

width was selected at one decimeter. Three different interpolation methods were investigated, 

i.e., linear interpolation, natural neighbour interpolation (the aforementioned Voronoï 

interpolation) and spline interpolation.  
 

 
Figure 1. Radio map of AP CDEG-6 

 

Table 1 lists the achievable mean deviations from the ground truth for positioning with the three 

different interpolation methods for the two different trajectories described in section 3. For that 

purpose, averaged radio maps are derived from the whole dataset of the kinematic 

measurements on the reference points along the trajectories using these three approaches. Since 

only the time and not precisely the RSSI were recorded during the kinematic measurements at 
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the reference points, a method had to be found to obtain the RSSI values at the reference point 

time. The RSSI value of the closest time stamp at the reference point time was used as the 

reference point value (referred to as ‘closest’ in Table 1) for the first approach, and in the second 

approach the RSSI values between the time stamps were interpolated linearly and the value 

with the same reference point time was taken (referred to as ‘linear’ in Table 1). If RSSI with a 

value of lower than -105 dBm were obtained during interpolation, this number was set. As can 

be seen from the Table, the ‘linear’ method delivers smaller deviations than the ‘closest’ method 

for trajectory 1. It can also be seen that Voronoï and linear interpolation deliver better results 

than spline interpolation. In trajectory 2, on the other hand, the ‘closest’ method delivers slightly 

smaller deviations. As the differences between the interpolation methods are marginal it is 

concluded that there is no universally valid interpolation method for creating a radio map. In 

order to have a uniform method, the ‘linear’ method was used together with the Voronoï 

interpolation for further calculations. 

 

Interpolation method Trajectory 1 Trajectory 2 

Linear, closest 4.70 4.30 

Voronoi, closest 4.56 4.25 

Spline, closest 5.33 4.14 

Linear, linear 4.40 4.59 

Voronoi, linear 4.17 4.57 

Spline, linear 4.44 4.75 
 

Table 1: Mean deviations in [m] of the different radio map creations 

 

3. TEST AREA CHARACTERISTICS AND SMARTPHONE SPECIFICATIONS 

 

Experiments were conducted in an University office environment where Wi-Fi infrastructure 

was available. The infrastructure consisted of Cisco Wi-Fi routers of model AIR-CAP2602E-

E-K9 and AIR-CAP2702E-E-K9. In addition, five Raspberry PI units configured as APs were 

used to cover the entrance area of the building ensuring full Wi-Fi reception. In this paper results 

of the experiments on the ground floor are presented. Figure 2 shows the area indicating two 

selected trajectories. The first trajectory ‘EI7_Run’ is 150.6 m long and leads over 15 waypoints 

from reference point RP1 through the main entrance into the hallway and auditorium VII to its 

end point RP14 at the exit to the inner courtyard of the building. The second 79.7 m long 

trajectory ‘EG_CR’ has also 15 waypoints and starts at the side entrance of the building and 

then continues to an anteroom in front of the class room and leads then through an area with 

permanet desktop computers into the courtyard. Both trajectories were measured with normal 

walking speed several times in both directions, with an average duration of a tets run of 

120 seconds for trajectory 1 and 64 seconds for trajectory 2, respectively, In order to get enough 

comparison values of the Wi-Fi signals and to take into account the temporal and environment-

dependent signal variations, measurements were carried out on different days and times of the 

day. Three different smartphones were used (see Table 2) where all of them used the IEEE 

802.11a/b/g/n standard. Additionally, the Sony Xperia Z3 uses the newest standard IEEE 

802.11a/b/g/n/ac. An inhouse developed smartphone App developed by Hofer was used for data 
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recording (Hofer and Retscher, 2017). Since the smartphones contain different Wi-Fi chips, 

they result in different scan durations. Table 2 shows also the average scan durations and it can 

be seen that two smartphones have a quite long duration of around 4 seconds while the third of 

only 1.2 seconds. The scan duration has a major influence on the number of scans recorded for 

each run which results in different positioning accuracies (see section 4.2). 

 

 

 
 

Figure 2. Map of the test area indicating the two trajectories 

 

Name  Samsung Galaxy S3 Samsung Galaxy A3  Sony Xperia Z3 

Model GT-I9300 SM-A310F D6603 

Abbreviation  S3 A3 Z3 

Wi-Fi 802.11a/b/g/n 802.11a/b/g/n 802.11a/b/g/n/ac 

Frequency band 2.4 GHz, 5 GHz 2.4 GHz 2.4 GHz, 5 GHz 

Sensors  

accelerometer, 

gyroscope, air pressure 

sensor, compass 

accelerometer, 

gyroscope, compass 

accelerometer, 

gyroscope, air pressure 

sensor, compass 

Wi-Fi scan duration in [s] 3.6 1.2 4.2 

 

Table 2: Smartphone specifications 
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4. MAIN RESULTS OF THE EXPERIMENTS 

 

Several investigations using the kinematic RSSI scans obtained along the two trajectories 

shown in Figure 2 are presented in this section. For the calculation of the positioning results, 

the deterministic Nearest Neighbour (NN) and k-Nearest Neighbour (kNN) algorithm were 

employed. The different test runs and smartphones are compared and it is examined how a 

change in the number of APs affects the results. 

 

4.1 Comparison of Different Test Runs 

 

Table 3 compares the individual test runs and reference points for trajectory 1 whereby the 

colours of the columns corresponds to the three different smartphones, i.e., yellow for the 

Samsung Galaxy S3, orange for the Samsung Galaxy A3 and blue for the Sony Xperia Z3. The 

numbers in green indicate that the respective reference point was determined with no deviation 

from the ground truth. One can see that reference point RP2 could be determined 10-times from 

all 20 test runs without any deviation. The overall best run was No. 11 with an average deviation 

of around 2.2 m where the Samsung Galaxy S3 was used. The runs with the largest mean 

deviation of around 6.8 m were runs 16 and 20 using the Sony Xperia Z3. Table 4 shows the 

results from the second trajectory. Along this trajectory reference point RP8 showed no 

deviation 7-times. Moreover, it can be seen that run 14 with the Samsung Galaxy A3 resulted 

in the smallest mean deviations. Again the largest mean deviation of 9.8 m were obtained with 

the Sony Xperia Z3 in run 11. 

 

4.2 Scan Duration 

 

Table 5 compares the scan duration and resulting number of scans for the test runs along the 

two trajectories. The individual smartphones are colour-coded as above. It is particularly 

noticeable that the number of scans is much higher for the test runs carried out with the Samsung 

Galaxy A3. This is obviously due to the different scanning intervals of the smartphones listed 

in Table 2. As seen above, this smartphone performed best which proves that the scan duration 

has major impact on the achievable positioning results.  

 

4.3 Smartphone Differences 

 

Table 6 compares the positioning results of the three smartphones whereby no device specific 

radio map but the one with the averaged values of all training measurements was used for the 

calculations. Furthermore, the interpolated time was used here as reference time. As can be seen 

from the Table, the Samsung Galaxy S3 delivers the best result for trajectory 1 with an average 

deviation of 3.30 m. However, the same smartphone results also in the largest mean deviation 

of 6.08 m in trajectory 2. Samsung Galaxy A3 delivers good results in both trajectories with a 

deviation of 3.71 m and 2.96 m respectively. The Sony Xperia Z3 was the worst performer, 

with an average deviation over 5 m for both trajectories. 
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 Run 

Deviation  1 2 3 4 5 6 7 8 9 10 

RP2 0.00 0.00 0.00 6.23 3.90 2.41 0.00 0.00 0.00 2.21 

RP3 3.32 3.20 10.00 4.19 5.80 6.89 2.31 2.40 10.38 7.32 

RP4 1.70 9.18 1.80 2.90 5.50 4.48 1.39 3.70 0.30 5.40 

RP5 1.30 7.58 0.40 9.60 3.30 9.30 7.49 3.80 12.43 4.90 

RP6 10.27 6.30 0.20 0.40 0.00 2.20 12.37 3.93 0.71 0.51 

RP7 8.20 1.60 9.00 7.41 6.50 9.50 6.00 2.90 9.63 1.00 

RP8 0.00 0.00 6.11 7.52 2.75 1.20 4.30 0.00 3.06 0.00 

RP9 1.51 10.02 0.14 2.38 4.18 2.56 0.00 8.79 0.00 0.94 

RP10 1.36 7.11 4.77 3.89 9.68 2.60 3.80 8.42 9.61 3.00 

RP11 0.50 3.81 2.62 6.86 1.70 1.81 1.36 3.78 2.53 3.11 

RP12 1.14 0.78 1.30 8.60 0.61 0.00 6.16 0.85 1.00 7.29 

RP13 1.40 8.60 0.90 0.00 0.00 0.00 1.00 1.75 1.88 1.60 

RP14 7.89 6.33 6.26 12.20 2.15 5.55 7.84 9.95 11.80 9.65 

mean 2.97 4.96 3.35 5.55 3.54 3.73 4.16 3.87 4.87 3.61 

 

 Run 

Deviation  11 12 13 14 15 16 17 18 19 20 

RP2 0.00 0.00 0.00 5.62 3.52 2.35 0.00 1.60 4.41 3.20 

RP3 0.80 4.87 4.50 1.43 10.07 5.30 0.76 0.30 15.70 4.62 

RP4 5.47 10.25 2.24 1.60 6.10 3.31 3.04 1.90 6.12 10.90 

RP5 2.50 12.84 0.00 3.90 5.91 5.97 1.40 3.20 4.30 5.90 

RP6 2.90 0.00 5.72 1.80 2.40 9.43 2.10 1.10 9.34 2.12 

RP7 2.11 2.00 3.61 3.50 0.20 9.09 6.11 3.80 10.20 10.70 

RP8 1.90 4.10 0.00 7.74 2.62 8.42 4.02 7.50 3.14 12.38 

RP9 3.13 8.76 0.00 3.08 5.42 5.30 1.66 3.36 0.00 9.58 

RP10 5.32 1.25 1.89 3.24 5.97 6.24 11.19 4.18 8.42 4.59 

RP11 0.14 0.14 3.36 4.49 1.70 13.69 3.14 3.00 0.58 5.98 

RP12 0.00 0.00 3.57 1.08 0.00 7.25 1.66 0.92 0.30 7.25 

RP13 0.20 0.00 3.18 3.01 1.70 0.10 2.79 3.10 1.60 1.50 

RP14 3.97 4.47 10.93 8.74 9.03 11.28 8.54 9.40 7.36 9.11 

mean 2.19 3.75 3.00 3.79 4.20 6.75 3.57 3.34 5.50 6.76 

Table 3. Comparison of all test runs along trajectory 1 (deviations in [m]) 
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 Run 

Deviation  1 2 3 4 5 6 7 8 9 10 

RP2 0.20 1.81 2.01 3.11 2.81 1.32 0.22 2.31 2.61 3.81 

RP3 5.92 1.97 6.42 1.77 16.17 0.50 5.42 1.94 6.22 6.64 

RP4 0.22 3.90 5.34 0.71 3.42 0.42 4.34 5.47 4.24 8.80 

RP5 5.73 0.40 7.51 7.62 2.21 5.40 7.38 0.42 7.31 3.67 

RP6 1.63 5.66 4.77 7.65 1.33 1.84 1.22 2.75 5.23 3.85 

RP7 0.95 1.36 1.90 4.19 0.20 2.38 0.36 2.69 3.11 3.74 

RP8 0.32 0.10 6.51 0.00 2.15 0.00 0.67 0.00 6.32 0.00 

RP9 1.20 3.53 1.70 3.80 9.28 3.14 2.00 1.20 1.80 6.70 

RP10 13.38 6.20 3.41 8.50 2.97 6.20 8.56 7.50 4.30 8.40 

mean 3.28 2.77 4.40 4.15 4.50 2.36 3.35 2.70 4.57 5.07 

 

 Run 

Deviation  11 12 13 14 15 16 17 18 19 20 

RP2 40.93 38.51 0.63 2.41 3.41 4.40 0.20 3.21 5.00 5.75 

RP3 31.72 5.06 9.71 1.36 6.42 3.42 5.62 4.52 6.72 3.83 

RP4 0.71 8.09 2.91 2.91 8.78 8.68 6.67 2.69 17.64 4.47 

RP5 9.31 5.64 6.80 0.20 3.11 1.84 1.24 1.35 2.52 12.70 

RP6 1.73 2.84 2.55 4.39 6.55 6.63 0.00 4.34 4.90 11.37 

RP7 0.00 2.09 1.14 0.22 1.60 4.78 0.14 0.10 4.02 7.96 

RP8 0.00 0.00 0.32 0.00 0.82 8.56 1.41 0.63 4.54 5.98 

RP9 2.00 1.00 1.80 1.80 1.40 13.40 1.30 4.16 8.26 10.20 

RP10 2.21 5.30 6.48 7.80 4.10 10.10 5.56 7.60 4.30 8.40 

mean 9.84 7.61 3.59 2.34 4.02 6.87 2.46 3.18 6.43 7.85 

Table 4. Comparison of all test runs along trajectory 2 (deviations in [m]) 

 

4.4 Dependence on AP Number 

 

In order to investigate the effects of the number of APs which are used for the calculations on 

the achievable accuracies, a further analysis of the RSSI values was conducted. As the network 

consists of multiple SSIDs (Service Set Identifiers), one physical AP can have three MAC 

adresses. In the first case of investigation all three MAC addresses were used individually and 

in the second case the averages of the RSSI values of the three MAC addresses were used for 

the calculations. Thus, the number of used MAC addresses corresponds to 35 and 15, 

respectively. Since the APs CAEG-1 to 4 are quite far away from the trajectories (compare 

Figure 2) and there are almost no high RSSI values received from them, they were omitted in a 

further third calculation (11 APs) As shown in Table 7, the more APs are used, the better the 

result for both trajectories. If only 15 or 11 APs are used instead of 35 the mean deviations 

increase to around 4.6 from 4.2  m for trajectory 1 and to 4.9 from 4.6 m for trajectory 2. 
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Table 5: Scan duration and number for the test runs 

 

Smartphone Trajectory 1 Trajectory 2 

Samsung Galaxy S3 3.30 6.08 

Samsung Galaxy A3 3.71 2.96 

Sony Xperia Z3 5.07 5.42 
 

Table 6: Mean deviations in [m] of the different smartphones 

 

No. APs Trajectory 1 Trajectory 2 

35 4.17 4.57 

15 4.60 4.87 

11 4.62 4.85 
 

Table 7: Mean deviations in [m] in dependence of used APs 
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4.5 Resulting Trajectories 

 

Finally, the two trajectories were investigated as a whole, i.e., including the RSSI scans for a 

total run. The shown trajectories in Figures 3 and 4 were smoothed with a moving average filter. 

On the left the best resulting trajectory and on the right the worst result is shown. As previously 

seen, run 11 shows the best result with an average deviation of around 2.2 m for trajectory 1 

and run 14 with a deviation of 2.3 m for trajectory 2. The worst results with a deviation of 

around 6.8 m delivers run 20 for trajectory 1 and run 11 with 9.8 m for trajectory 2. If one looks 

at Figure 4 on the right it is notable that the trajectory starts with a totally wrong starting 

position, which lies about 55 m away from the true position. On the other hand, the result of 

run 14 measured with the Samsung Galaxy A3 follows the ground truth very precisely (Figure 4 

left).  

 

  
 

Figure 3. Results of two test runs along trajectory 1 

 

  
 

Figure 4. Results of two test runs along trajectory 2  
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5. DISCUSSION OF THE TEST RESULTS 

 

Kinematic system training is very challenging but it could be shown that it can deliver only 

slightly worse results as usually obtained in Wi-Fi location fingerprinting with static training 

measurements leading to high workloads. As expected, the test results reveal that significant 

differences can be seen depending on the employed smartphone. Due to the different location 

and type of antenna in the smartphones, the same measured RSSI value does not necessarily 

result at the same position (Grossmann et al, 2007). This hardware dependence has a negative 

influence on the accuracy of the position determination. Device-dependent fingerprints can be 

derived from RSSI measurements by normalization; e.g. the relative relationship between pairs 

of APs can be used instead of the absolute RSSI measurement (Retscher et al., 2018). 

Furthermore, the differences between the RSSI values can also be used to obtain device-

dependent fingerprints (Khalajmehrabadi, 2016). 

 

The NN method was used to calculate the positions of the smartphone user. First the Euclidean 

vector distance for each fingerprint in the radio map was determined individually and then the 

minimum value was searched in the radio map. Then the deviations from the true coordinates 

were calculated for each reference point. Large deviations are mainly caused by (compare 

Khalajmehrabadi, 2016): 

 

1. Multipath effects which occur due to short-term obstacles, e.g., furniture, people, etc.; 

2. AP availability: some APs may be temporarily unavailable or unstable due to 

disturbances, energy loss, etc.; 

3. Signal strength changes: APs can change the RSSI when the number of clients changes; 

4. Different number of APs: there is no guarantee that an AP is always available during 

the training and positioning phase.  

 

The last influence can be prevented with continuous system training as it was done in this study. 

Thus, its influence is reduced to a minimum as both phases took place simultaneously in this 

work.  

 

If several positions with a small distance are found, a set of points with the k-smallest distances 

can also be selected (i.e., kNN method). Therefore, it was investigated whether the kNN method 

achieves better results than NN. The center of gravity of the k-nearest points with k from 1 up 

to 15 was calculated and the deviations obtained. The results showed that there was no 

significant improvement of the mean deviations in either trajectory. Contrary to the 

expectations, the mean deviations even increased slightly as the value of k increases. However, 

this increase was only in the centimeter range.  

 

6. CONCLUSIONS 

 

The aim of this study was to carry out indoor positioning based on Wi-Fi fingerprinting without 

static training phase measurements. The main advantage of Wi-Fi compared to other 

techniques, such as Bluetooth iBeacons or RFID, is that many public buildings already have 

the necessary infrastructure. Besides fingerprinting, there are other methods for indoor 

Influence of the RSSI Scan Duration of Smartphones in Kinematic Wi-Fi Fingerprinting  (9743)

Guenther Retscher and Alexander Leb (Austria)

FIG Working Week 2019

Geospatial information for a smarter life and environmental resilience

Hanoi, Vietnam, April 22–26, 2019



 

positioning. These are mainly trilateration and cell-based solutions. The later, however, has a 

poor accuracy depending on cell-size and is therefore only used as an approximate solution.  

 

During the analysis, the fingerprinting radio map was created in different ways and with 

different reference data sets. It was seen that there is no generally valid interpolation method 

for radio map creation. Depending on the trajectory, the Voronoï or spline interpolation showed 

the smallest deviations. It can be assumed that the observed positioning errors could have been 

reduced by an improved reference data collection. This mainly concerns the distance between 

the reference points. At a smaller distance with more reference points more RSSI values for the 

radio map creation would be available. The determination of the signal strengths at the refereece 

points also did not yield a clear result. The reference data set, in which the RSSI values are 

averaged at the reference points and which contains the highest number of visible APs, turns 

out to be the best. Contrary to the expectations, there is no improvement in the application of 

the kNN method as opposed to the simple NN method. 

 

Kinematic measurements pose a much greater challenge than static measurements or in stop-

and-go mode. How long a Wi-Fi scan takes depends on the number of visible APs and has a 

large influence on the results. In practice, kinematic RSSI scans were performed with three 

different smartphones. The smartphone with the longest scan duration delivered the worst 

results for both trajectories with an average deviation of more than 5 m. The reason for this is 

the long average scanning time of around 4.2 seconds. The other two smartphones delivered 

better results, i.e., averaged over the whole test runs, the mean deviation of all smartphones for 

trajectory 1 was 4.2 m and 4.6 m for trajectory 2, respectively.  

 

In general it can be said that the achieved positioning accuracies for the kinematic system 

training are not much worse than with static measurements. The big adavantage, however, is 

that the training phase is much shorter and continuous system training can also be carried out. 

A further improvement of the positioning accuracies can be acheived by combined use of the 

inertial smartphone sensors, such as accelerometer, gyroscope and magnetometer, for dead 

reckoning navigation, as was shown in the paper of Retscher and Hofer (2017). This is subject 

of further investigations.  
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