HISTORICAL REVIEW OF MEASUREMENTS USING INVAR WIRES IN SERBIA

Siniša Delčev Vukan Ogrizović Jelena Gučević

FIG Working Week 2012 - May 6-10 2012 - Rome, Italy

1/15

The idea

- W. Snellius (1615)
- Piccard
- Triangulation
- Short, directly measured lengths
- How to achieve accuracy requested for 1st order triangulation networks?

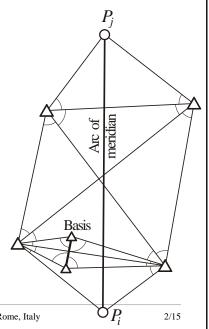
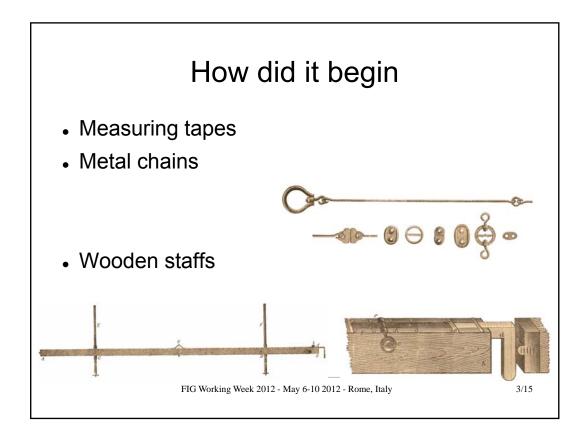



FIG Working Week 2012 - May 6-10 2012 - Rome, Italy

1

Huge step forward

- Jäderin basis apparatus (1880)
 - · Advanced metal chain
 - Streching mechanism
 - Made of iron (24 m long with weights on both sides)
 - 60 cm high tripods
 - Rulers for reading on both sides
- Drawback:
 - Large temperature coefficient

FIG Working Week 2012 - May 6-10 2012 - Rome, Italy

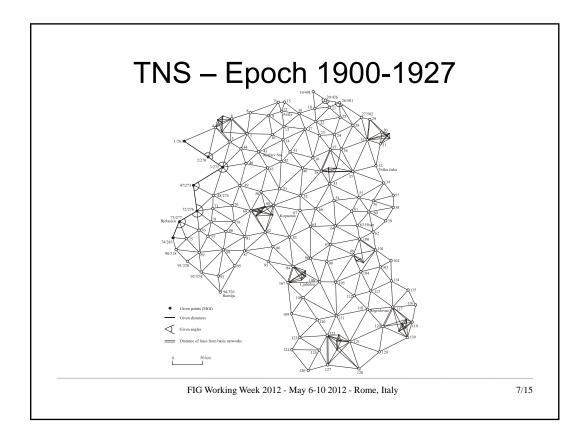
Invention of invar (1896)

- René Benoit & Charles Edouard Guillaume
- FeNI36 alloy of:

• Steel: 63.3%

· Nickel: 36%,

- Traces of Manganese and Carbon
- Thermal expansion coefficient: 1.2*10⁻⁶ K⁻¹ (1.2 ppm/°C)


FIG Working Week 2012 - May 6-10 2012 - Rome, Italy

5/15

Serbian 1st order trigonometric network (TNS)

- Militar Geogräphishen Institut (1872)
 - · Chain of triangles, divided into parts
 - Each part → network datum
- Geodetic Institut of Serbian Kingdom (1887)
 - Paraćin basis
- Vojno-geografski institut VGI (1899)
 - Horizontal angles
 - Baselines
 - Astro-geodetic determinations (30 points)

FIG Working Week 2012 - May 6-10 2012 - Rome, Italy

General Stevan Bošković

- The head of VGI
- Well known of his astro-geodetic determinations
- He provided a Carpentier set with invar wires from France
- S/Ns: "0", A26, and A30

FIG Working Week 2012 - May 6-10 2012 - Rome, Italy

Measurements

- Eight baselines in total
- The baselines fixed with stone pillars
- One "operational" and two "testing" wires
- Speed: 5.6 km of Paraćin baseline measured in 4 days

FIG Working Week 2012 - May 6-10 2012 - Rome, Italy

9/15

Basis networks in numbers

Name of network	D bline. [km]	D exit b.line [km]	Year	# of wires	# of mea.	Rel. b-line err 1:	# of pts.	# of dirs.	# of
Paraćin	5,60	36,61	1904.	1(1)	2	938 000	8	40	22
Negotin	4,66	33,99	1904.	1(1)	2	910 000	7	38	23
Vranje	4,97	32,03	1904.	1(1)	2	1 076 000	6	22	8
Loznica	5,03	35,21	1904.	1(1)	2	1 034 000	8	42	26
Prizren	5,38	27,67	1922.	1(5)	2	1 037 000	6	30	16
Strumica	6,62	34,27	1922.	1(5)	2	1 106 000	8	42	24
Prilep	5,98	48,14	1922.	1(5)	2	1 316 000	8	44	28
Sjenica	5,57	36,62	1924.	1(5)	2	798 000	9	48	27

FIG Working Week 2012 - May 6-10 2012 - Rome, Italy

Early days of metrology

- All wires calibrated in Paris
- Length and temperature expansion
- Certificates of calibration still exist

FIG Working Week 2012 - May 6-10 2012 - Rome, Italy

11/15

Institute of Geodesy measurements

- Suspicion in the results: possible gross errors in basis networks
- Reconstruction of Paraćin basis (81 instead of 3 pillars 8 x 24 m, 3 x 192 m, 9 x 480 m & 1 x 504 m) and re-measurement
- Taken into account:
 - Deviation of the wire length from the nominal value
 - Change of the length due to temperature diff.
 - Non-summetry of the catenary
 - Inclination of reading scales one, Italy

12/15

Reduction to the horizon

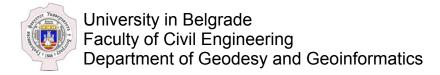
Results

- 1 dm error in the first measurement found
- => 1 m error in the exit baseline

The error confirmed later, by direct

measurements

FIG Working Week 2012 - May 6-10 2012 - Rome, Italy


13/15

Conclusion & remarks

- The work of Jäderin and Snellius made the (indirect) measurement of lengths in trigonometric networks possible
- Thanks to Gen. Bošković's efforts and connections, Kingdom of Serbia obtained the invar wires
- Applied principle sensitive to outliers, due to low reliability

FIG Working Week 2012 - May 6-10 2012 - Rome, Italy

Thank you for your attention

Dr Siniša Delčev, associate professor delcev@grf.bg.ac.rs

Dr Vukan Ogrizović, assistant professor vukan@grf.bg.ac.rs

Dr Jelena Gučević, associate professor jgucevic@grf.bg.ac.rs

FIG Working Week 2012 - May 6-10 2012 - Rome, Italy