

Session 1.3 Worked examples of Terrestrial Reference Frame Realisations

Australia

Dr John Dawson Leader - National Geodesy Program Geoscience Australia

Sponsors:

Presentation Overview

- Background
 - Australia's early geodetic developments
 - Geocentric Datum of Australia (GDA)
 - Australian Height Datum (AHD)
 - Modelling the relationship between GDA and AHD using the national geoid model (AUSGeoid)
- Practical considerations for accessing and using the reference frame
 - ITRF and its relationship to GDA
 - AUSPOS the Australian online GPS processing service
- Australian Datum Modernisation
 - Ideas for the future

Australia's Reference Frame: Largely triangulation before 1956

Australia's Reference Frame: Triangulation - labour Intensive

Australia's Reference Frame: Triangulation - challenges

Geodimeter

- Model 1 (1954 to 1956)
- Model 8 (1968)
 - More portable
 - Increased accuracy, ~1 ppm

Tellurometer

- Introduced in 1956
 - Long traverses & loops possible
 - More coverage
 - Accuracy ~ 5 ppm

Australian DOPPLER Survey, 1975 to 1977

- Satellite positioning
- 106 stations
- 7-day observations (~40 passes) !
- Post processing by US Defence
- ~1 metre accuracy

Australian Regional GPS Network (ARGN)

- Established (beginning) 1992
- Includes stations in Antarctica
- Sub-set of the ARGN that define the national datum are referred to as the Australian Fiducial Network (AFN)
- Now renamed to the Australian Regional GNSS Network (ARGN) to reflect the move to multi-GNSS technology

Geocentric Datum of Australia 1994 (GDA94)

- Superseded the Australian Geodetic Datum (AGD) series
 - Geocentric datum
- ITRF1992
 - Holding fixed 13 global stations @ 1994
- Recognised-value standard for position
 - Eight Australian Fiducial Network (AFN) and Perth
- Weakness: no convincing uncertainty analysis
 - 30 and 50 mm (95% C.L.)

Australia's National Geodetic Infrastructure

Australian Height Datum, 1971

- At 1970:
 - 160,000 km of level lines
 - ~ 100,000 Bench Marks
 - 32 tide gauges (MSL 1966-68)
 - Mostly 3rd order

The Australian National Geoid Model (AUSGeoid)

Australian Geodesy

Additional episodic GNSS networks

Promulgating reference frame in Australia

Traditional Approach (via survey marks)

Increasingly Common Approach (via CORS services, AUSPOS)

Accessing the Frame: AUSPOS

Accessing the Frame: AUSPOS

Ø

Done

Geoid-ellipsoidal separations, in this section, are computed using a spherical harmonic synthesis of the global EGM2008 geoid. More information on the EGM2008 geoid can be found at http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/

🕘 Unknown Zone

- Total difference now exceeds 1 metre
 - Tectonic motion (1994 2012 @ 70 mm yr⁻¹)
 - ITRF1992 and later ITRFs (16 and 75 mm)
 - Residual intra-plate, regional and local deformation (
 - Horizontal ~1 mm yr⁻¹
 - Vertical ~5 mm yr⁻¹
- Many users work across the two reference frames
 - IGS and WGS84 satellite trajectories

My preferred transformation model

- 14 Parameter Similarity
 - Simple and well understood by users
 - Accurate and effective in Australia i.e. near rigid plate
 - Consistent with ITRF computations

$$\begin{pmatrix} X_{GDA94} \\ Y_{GDA94} \\ Z_{GDA94} \end{pmatrix} = \mathbf{T} \begin{cases} X_{ITRF} \\ Y_{ITRF} \\ Z_{ITRF} \end{cases} = \begin{pmatrix} t_x + \dot{t}_x(t - t_0) \\ t_y + \dot{t}_y(t - t_0) \\ t_z + \dot{t}_z(t - t_0) \end{pmatrix} + (1 + s_c + \dot{s}_c(t - t_0))$$

$$\begin{pmatrix} 1 & r_z + \dot{r}_z(t - t_0) & -r_y - \dot{r}_y(t - t_0) \\ -r_z - \dot{r}_z(t - t_0) & 1 & r_x + \dot{r}_x(t - t_0) \\ r_y + \dot{r}_y(t - t_0) & -r_x - \dot{r}_x(t - t_0) & 1 \end{pmatrix} \begin{pmatrix} X_{ITRF} \\ Y_{ITRF} \\ Z_{ITRF} \end{pmatrix}$$

- Older parameters
 - Dawson and Steed
 - ITRF96, ITRF97, ITRF2000
- Current parameters
 - Dawson and Woods, 2010, Journal of Applied Geodesy
 - ITRF96, ITRF97, ITRF2000, ITRF2005 and ITRF2008

ITRF-to-GDA94 Transformed				Mean Residual		
	Coordinate RMS			Transformed - Gazetted		
Station	North	East	Up	North	East	Up
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
Alice Springs	1.5	1.0	4.3	0.0	8.9	-13.1
Ceduna	1.5	1.3	3.3	-0.5	10.8	18.2
Darwin	1.8	1.6	6.6	1.5	-14.7	4.8
Hobart	1.9	1.4	3.5	-16.5	8.1	11.4
Karratha	1.9	1.4	3.6	8.4	8.1	-22.9
Perth	2.5	3.5	6.9	11.9	26.8	- 68.4
Tidbinbilla	1.7	1.3	3.3	4.0	5.6	-6.7
Townsville	1.6	1.6	3.9	-8.0	-3.9	-10.2
Yarragadee	1.7	1.5	5.4	-0.9	-33.9	67.9
					RMS	
All sites	1.8	1.8	4.7	8.4	17.5	36.4

Table 4: The RMS of the weekly station coordinates (126×7 -day solutions), with respect to the combined solution, after transformation to GDA94 and the mean residual with respect to their gazetted positions.

Station	Vertical	Deformation	
	Velocity	1994 to 2010	
	$(\mathrm{mm}~\mathrm{yr}^{-1})$	(mm)	
Alice Springs	$\textbf{-0.4}\pm0.3$	-6 ± 4.8	
Ceduna	$\textbf{-2.0}\pm0.3$	-32 ± 4.8	
Darwin	$\textbf{-1.0}\pm0.4$	-16 ± 6.4	
Hobart	0.6 ± 0.2	10 ± 3.2	
Karratha	0.8 ± 0.3	13 ± 4.8	
Perth	$\textbf{-6.0}\pm0.3$	-96 ± 4.8	
Tidbinbilla	$\textbf{-0.2}\pm0.2$	-3 ± 3.2	
Townsville	1.2 ± 0.3	19 ± 4.8	
Yarragadee	1.0 ± 0.1	16 ± 1.6	

Example: Perth Groundwater – GPS – Sea Level

Impact of using ITRF orbits and GDA94 coordinates @ 2010

Baseline	Maximum	Maximum	
Length	Horizontal	Vertical	
(km)	Difference	Difference	
	(mm)	(mm)	
20	2	4	
70	6	12	
150	14	26	
300	28	53	
500	75	88	
1000	100	175	

Reference Frame Directions in Australia

- We have updated the recognised-value standard for position using ITRF2008
 - Including 21 ARGN and AuScope stations
- Address limitations of 'official' positional uncertainty
- Broad-scale deformation modelling
 - Start in the capital cities and exploit CORS, GNSS observations and time-series radar
- Improved GNSS antenna modelling capability
 - Antenna calibration facility located at Geoscience Australia, Canberra

National Geodetic Datum - Roadmap

National Geodetic Datum - Framework

- Thank you!
- Questions?
- Further Information: John.Dawson@ga.gov.au

Sponsors:

