

M. Elayachi, Laboratoire LERGET^{*}, IAV Hassan2, Rabat, Maroc

INTRODUCTION:

- Projection: transform the <u>globular</u> 3D shape of the <u>Earth</u> into the 2D form of the <u>map</u> ,
- > Process: use an intermediate forms:

Conical projections

Cylindrical projections

Azimuthal projections

A New Didactical Mechanism to Understand Map Projection

M. Elayachi, Laboratoire LERGET, IAV Hassan2, Rabat, Morocco

CHALLENGE:

In Map Projection Process:

- > Theoretical approach to teach map projections,
- > Complicated steps in terms of mathematics (transformation) and analysis (distorsions)
- > Conception needs imagination and theoretical functions

OBJECTIVES:

- > Explain practically the phenomenon of projection?
- > Enable understanding the theoretical steps?
- > Clarify the transformation process from 3D to 2D representation?

M. Elayachi, Laboratoire LERGET^{*}, IAV Hassan2, Rabat, Maroc

MECHANISM TOOL

√ Labeling: ISQAT:

√ Component:

- Enlighten globe: Light Bulb (7W, 230 V, 55 mA, 50 Hz)
- · A support of the bulb,
- · Power cable,
- · Grid lines : parallels & meridians
- · A transparent sheet.

A New Didactical Mechanism to Understand Map Projection

M. Elayachi, Laboratoire LERGET*, IAV Hassan2, Rabat, Maroc

STEPS

- 1.Use transparent sheet to build : Cylindric, conical, and azimuthal forms
- 2. The globe should fit within the three forms,
- 3.Draw parallels with a span of 30°: 6 intervalles;
- 4.Draw meridians with a span of 45°: 8 intervalles;
- 5. Turn on the globe ISQAT -
- 6.Draw the corresponding images of the grid lines

M. Elayachi, Laboratoire LERGET^{*}, IAV Hassan2, Rabat, Maroc

3. Project the globe -ISQAT- to the plan surface :

➤ Wrap the globe ISQAT by one transparent surface, cone, cylinder or plane,

A New Didactical Mechanism to Understand Map Projection

M. Elayachi, Laboratoire LERGET^{*}, IAV Hassan2, Rabat, Maroc

5. Project the globe -ISQAT- to the plan surface :

- > Draw the corresponding images of the grid lines
- >Perform the projection by developing the area .

M. Elayachi, Laboratoire LERGET^{*}, IAV Hassan2, Rabat, Maroc

4. Study of the distortions

- \succ Measure a linear feature along a meridian (S=ds $_{\phi}$) on the globe and its corresponding (Sp) on the projected surface in 3 projections,
- > calculate the scale factor Sp/S for each case;

- \succ Measure a linear feature along a parallel (s=ds_{λ}) on the globe and its corresponding (Sm) on the projected surface in 3 projections,
- > Calculate the factor scale Sm/S for each case:
- > calculate the Radius of the globe using the mean radius of the earth (6400 km)
- > calculate the factor scale of the transformation from the Earth to the globe (ISQAT).

A New Didactical Mechanism to Understand Map Projection

M. Elayachi, Laboratoire LERGET^{*}, IAV Hassan2, Rabat, Maroc

CONCLUSION

The advantages of the mechanism:

- ✓ Better understanding of the meaning of Map Projections of a 3D form to 2D;
- √ The distortions are concretely identified,
- ✓ The nature of the obtained image of a projected feature according to the kind of the projection,
- ✓ Understand the principle of the scale of the transformation;
- ✓ Save time (6 hours) in teaching the map projections,
- √ This has enabled scheduling the map projections in GIS softwares as added value in the classroom.