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Abstract. The monitoring of buildings and the 
modeling of occurring deformations are main duties 
in the Engineering Geodesy. In this article a new 
procedure for describing (modeling) and forecasting 
deformations is presented and used, which based on 
the artificial neural network technology. This pro-
cedure has been proved effective especially for non-
linear models and complex sensor systems as well 
as for sensor combinations.  
In this article the inclinations are examined in the 
Geomatics metrology laboratory of the HafenCity 
University Hamburg. The data therefore have been 
recorded at two positions with the help of two in-
clinations sensors: one on a measurement pillar and 
the second on the inner wall. The building is locat-
ed directly on the Elbe river thus it is considered 
that the inclinations are under the influence of two 
essential factors: tide of the Elbe river and tempera-
ture changes, respectively. Two models are dis-
cussed here: a static – and a dynamic model. The 
first mentioned one considers only the current con-
ditions of the input and output value, whereas the 
second model also considers the previous state in 
addition to the current conditions by including the 
delays between influences and inclination reactions, 
detected through the cross-correlation. The ad-
dressed models are compared and the approaches to 
define the network structure are discussed.  
 
Keywords. Deformations measurements, inclina-
tion sensor, artificial neural networks, dynamic 
model, static model  
 
1  Introduction 
 
The use of artificial neural networks (ANN) for 
deformation tasks has been moved into scientific 
interest during the last years, especially in the field 
of Geodesy and Geomatics. Here, Heine was one of 
the first who used ANN for a dynamic modeling of 
a landslide,J.-B.Miima used this methodology for 

system identification of a bridge structure and Böhm 
for the modeling of the deformation of a lock [Heine 
1999, Miima 2002 and Böhm 2006]. For system 
identification [Neuner, 2012] gives a theoretical 
approach with ANN. 
The strength of ANN, which can also be used for 
monitoring tasks, lies in their ability to model and to 
reproduce complex and physical not easy to describe 
connections through learning examples. Beyond 
these examples, they provide, by further event in-
puts, correctly predicted output. This ability of gen-
eralization is of prime importance for prediction 
tasks [Heunecke 2013]. 
However, with this method you will achieve good 
results only when certain criteria of the network 
structure and the learning parameters have been log-
ically chosen (such as number of hidden neurons, 
learning algorithm, network topology respectively 
the connection type of the neurons etc.).  
Because of their wide variety and their high flexibil-
ity, ANN can be met in different application fields. 
However, to achieve the best possible results with 
this method, it is necessary to understand the ap-
proach of ANN profoundly as well as the features 
and the optimization opportunities they offer. One 
question for this study was: How far can static mod-
els acquire and model temporal variations or delays 
in the learning data? 
 
2  Theoretical principles 
 
Artificial neural networks are information pro-
cessing systems, which imitate the functioning of 
the human brain. They consist of a large number of 
simple, parallel working units, the so called neurons, 
which are spread over several layers in the network. 
They send each other information via given connec-
tions. These connections are weighted and due to the 
change of weight they will be adapted in a way that 
the network is able to provide the best solution for a 
problem at hand. This learning process is character-
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ized by the iterative modification of the variable 
weights, which store the knowledge of the network 
[Kruse, 2012]. 

A neural network has at least one input and out-
put layer. Many applications need more covered 
layers to mark the transmission behavior between 
input and output value. Here one speaks of a behav-
ior-model, which does not record physical correla-
tions between input and output value but it learns 
by means of certain learning algorithms and of 
training examples being present in the deformation 
analysis in form of observation pair. 
 

 
 
Fig. 1 The form of an artificial neural network. Typical 
schematic representation 
 
ANN are characterized essentially by their abilities 
to learn and to generalize, their robustness against 
disorder and lack of data, their fault tolerance and 
their high performance based on parallel processing 
[Strecker 1997]. During the training period the net-
work learns the present learning examples by adapt-
ing their parameter (connection weights and bias) to 
the examples. Here, an already defined learning 
algorithm indicates the exact method how the neu-
ronal net carries out this adaption (Rey, 2010 p26). 
For this purpose an error function was defined, 
which determines a total error term F to all kinds of 
weight combinations. The strategy of the training is 
to search and to determine the minimum of the error 
function. Here, the learning algorithms use the gra-
dient of the error surface, which indicates the direc-
tion of the steepest descent. This method is called 
‘Method of Steepest Descent’. In this procedure the 
weight changes in the network take place on the 
basis of the errors or deviations between target data 
output and the calculated output of the output neu-
rons [Haykin, 1999]. If the network has one or 
more hidden layers, then there is no longer the pos-

sibility to compare target- and actual output, be-
cause the neurons of the hidden layers have are no 
target output. In this case, the backpropagation pro-
cess is used. It is also possible to determine the 
weight changes to the hidden neurons this way 
(Kruse, 2012). Despite of these attractive character-
istics, however, the risk of overfitting exists in cases 
where ANN only store the data instead of learning 
from them. This means, the ability of the network to 
generalize has been compromised and the network is 
only able to reproduce the same random sample of 
the training but will fail with new data sets (in sim-
ple words, it is the case where: an ANN just “re-
members” but “does not learn”) [Rey, 2010]. 
 
3  Measurement setup 
 
In the HCU measurement laboratory, it was noticed 
that the measurement pillars are not stable. Because 
the stability of the laboratory is an essential re-
quirement to perform all exercises and works of the 
Geomatics as well as for its reliability, the stability 
of the laboratory pillars were investigated, given 
that they are under the simultaneous influence of 
two essential factors: tide of the Elbe river and tem-
perature. The result of this examination was that the 
two investigated pillars have indeed deformations 
(inclinations). 

Two inclination sensors of the type Leica Nivel 
20 were used for the monitoring. These sensors are 
able to dissolve a horizontal inclination of 0.001 
mrad (mm/m). The accuracy of the sensors is about 
0.010 mrad (mm/m) (sigma 95%). 
  

 
Fig. 2 Sensor setup and layout in the building 
 
The two sensors were fixed in the laboratory. One 
sensor was placed on a stable mounting fixed on the 
wall of the measurement laboratory. According to 
the blueprints, this wall is the supporting part of the 

E
lb

e 



 

 

 

3

northern building and extends up to the foundation. 
The second sensor is fixed on one of the measure-
ment pillars (see Figure 2). The stability of the 
measurement pillars and the wall was examined 
with this measurement setup. 
 
4  Provision of the learning data (data 
basis) 
 
The presumably inherent biggest factors should be 
the water level of the Elbe river (tide) and the sun 
(temperature). Besides the sensor data of the Nivel 
20 that was represented in the form of inclinations 
in the respective directions X and Y, the hourly 
values of temperature for Hamburg from the DWD 
(Deutscher Wetter Dienst) and the level data for the 
level St.Pauli from the HPA (Hamburg Port Au-
thority) were used and outliers were removed man-
ually. As common zero-point of all measurement 
data, the 01.05.2015 0:00 was chosen. The first aim 
was to synchronize the present data. The common 
time period, for which we have available synchro-
nous data for temperature, level, Nivel_1 and 
Nivel_2, lies between 302 and 491 hours. The syn-
chronized time series of the inclination in the X- 
and Y-direction for both sensors and of the two 
influence variables are represented in Figure 3. 
They result from an equidistantly scanning for the 
duration of an hour, comprise 189 data sets and 
cover a time period of about 8 days.  
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Fig. 3 The synchronized time series of temperature, level 
measurement and inclination, in X- (red) and Y-(blue) direc-
tions 
 
 
 
 

5  ANN for inclination modeling 
 
This model is a network with two input neurons 
(according to the influence variables temperature 
and level) and two output neurons (according to the 
inclination of each sensor in the X- and Y-
direction). However, the topology varies depending 
on whether the static model is used or the dynamic. 
 
5.1 The static model 
 
This model considers only the current state of the 
input variables and assumes thus that the defor-
mation reacts to the influence variables without 
hesitation. In this case, the network is a feed-
forward-network with two input and two output 
neurons. It remains to find the number of hidden 
neurons, which are most suitable for this problem. 
The precise network structure will be discussed in 
more detail later on. The neurons of the hidden layer 
have a sigmoid tanh-activation function, while a 
linear activation function is used for output neurons. 
As long as reference data respective targets are pre-
sent, this is supervised learning. 

As already mentioned the learning and the train-
ing of ANN presents an iterative process of weight 
change. To improve the results of this process, the 
following approaches are possible: 
 

• New initialization of the network parameters or 
multiple trainings. 

• Successive increasing of the number of hidden 
neurons. This concern is of prime importance, when 
defining the network structure, and will be ex-
plained later in more detail.  

• To train the network with different learning al-
gorithms: In the process of this work, the network 
was trained with two learning functions - Leven-
berg-Marquardt (LM) and Backpropagation (BP). It 
should be mentioned at this point, that due to its 
very good convergence behavior, LM provides in 
principle the best results for fitting problems (non-
linear regression) with a smaller ANN architecture 
and training data quantity. 
 
The three above mentioned approaches were con-
sidered for training the network until the network 
has achieved the best possible generalization. The 
early-stopping-approach is used to generalize the 
network. The available learning data in the network 
is divided into three sets: training data, validation 



 

 

 

4

data and test data. The training data set is used to 
train the neural network through weight adaption. 
The errors of the output of the validation data set in 
relation to the training data set are recorded during 
the training phase and diminish at the beginning of 
the training. When the neural network tends to 
overfit, this error increases and the weights are de-
termined on the basis of the minimum error. The 
test data is not part of the training process - it is 
only used to compare different models [Peters 
2012]. The data was divided like this: 70% training 
data, 20% validation data and 10% test data. There 
are no hard rules for data division. It depends on the 
complexity of the problem and on the amount and 
nature of the learning data (much or less noise…). 
However, there is no clear connection between the 
data division and the network performance. But 
20% for validation data is recommended in certain 
literature. The rest should be share like 70 % for 
training and 30 % for testing [Shahin, 2004]. So, 20 
% for validation data presents a compromise be-
tween the representative nature of the learning data 
and the deficit in the training data. In the case of 
small number of learning data, like in our case, the 
training data should not be subtracted very much, 
this is why we have chosen 70 % for training data. 
The motivation here is to validate (test) the model 
with another data set which differs from the data set 
used to train or estimate the network. The most im-
portant indicator for the quality of the network gen-
eralization is its mean square error (mse) (in Matlab 
performance).  
 
5.1.1 Cross-validation as approach to de-
termine network structure 
 
To determine the suitable network structure, it is 
necessary to define the number of hidden neurons. 
This quantity has major influence on the perfor-
mance potential of the network and should be cho-
sen therefore very carefully [Bishop, 2005]. An 
increase in the number of neurons in the hidden 
layer raises the flexibility of the neural network. 
But this needs more calculation and it is more vul-
nerable to overfitting, unless different neural net-
works are trained with various, successively in-
creased, numbers of hidden neurons. The network 
structure is defined by the number of neurons which 
leads to the smallest value with regard to the valida-
tion data. In this context it is essential, to carry out 
two test series with two different learning algo-

rithms whereby in every test the amount of hidden 
neurons were increased gradually. (3, 5, 10, 15, 20 
and 30 hidden neurons). 
A test with Levenberg Marquardt training function 
[LM]: 
In general, (LM) is the fastest learning function be-
cause of their very good convergence behavior and 
provides the best results for fitting problems (non-
linear regression) in case of a small architecture of 
the artificial neural networks. This method is partic-
ularly effective to avoid the problem of skipping 
over the global minimum because the curve of the 
error surface, represented by Hessian-matrix, is con-
sidered beyond the gradient [Kisi, 2005].  
A test with backpropagation-trainings function [BP] 
with momentum term (also called scaled conjugated 
gradient backpropagation): 
This method extends the normal backpropagation 
process for a so called momentum term, which is 
added to the current gradient. This allows the weight 
chance depending on the error minimization of the 
prior steps. This way, the process converges faster 
[Moller, 1993].  
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Fig. 4 Determining the number of hidden neurons according 
to the cross-validation method 
 
Figure 4 shows that the successively increased num-
ber of hidden neurons over 10 have a negative im-
pact on the network performance (mse) when the 
network is trained with BP-algorithm.  

While training with LM-algorithm, when the 
numbers of hidden neurons increases up to 20, the 
mean square deviation (performance), which is cal-
culated with the training data set, diminishes. From 
a quantity of 20 hidden neurons an up however, it 
increases again. The performance curve of the vali-
dation data achieves the minimum at 20 or 30 hid-
den neurons. To keep the complexity of the network 
within limits and in order to minimize the risk of 
overfitting, the network with 20 hidden neurons and 
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LM-learning algorithm was finally chosen. Figure 5 
shows the structure of the selected network. 

 
Fig. 5 Structure of the chosen network 
 
 
5.1.2 Selection criteria for the most appro-
priate network 
 
Every knot in the graphic of Figure 4 arises from 
multiple trainings of the network. Here, attempts 
were made to get a most similar course of the per-
formance curves of training-, validation- and test-
data. When all three curves are similarly formed, 
this means that the network responds similarly to 
learning data as well as to the validation- and test-
data [Beale, 2014]. The probability of overfitting is 
thus smaller but not excluded. Figure 6 shows the 
performance curves of the chosen network with 20 
hidden neurons and LM-learning algorithm.  
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Fig. 6 Performance-plot of the chosen network 
 
This performance plot shows no noticeable prob-
lems. The validation- and the test curves do not 
indicate overfitting. The training curve diminishes 
more than the validation curve and this way, repre-
sents that, the performance of the trained network 
with learning data is better than with the data not 
involved in the learning process.  

A further possibility to evaluate the generaliza-
tion of a network is a regression analysis between 
the network output and the respective targets, which 
typically is represented by a regression factor (cor-
relation coefficient R). With a perfect network per-

formance R should be one (1.0) but in reality this is 
not the case. Figure 7 shows the regression plot with  
R=0.7. 
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Fig. 7 Regression plots of the chosen network 
 
More information for evaluating the quality of the 
trained network is available from the error-
histogram which shows the distribution of the resid-
uals between targets and network output. This histo-
gram is able to indicate outliers. In this case, it is 
shown that most errors lie between -0.001 and 
0.001. However, there is a learning point with an 
error of 0.023. Based on the present outliers, it 
makes sense to check if the quality of the learning 
data is bad or if these outliers are just different from 
the rest data. 

 
Fig. 8: Error histogram of the chosen network 
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5.1.3 Results of the static model 
 
The results of modeling are presented in Figure 9 in 
the form of residuals between, the observed output 
values and the output values calculated in the 
trained network. 
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Fig. 9 Static model: Inclination of the sensors and residuals  
 
The graphic analysis of the results allows the state-
ment that the static modeling of the deformation 
model, to be processed with the help of neural net-
works within this work, do not provide reliable re-
sults. The outcome can be confirmed through the 
calculation of the standard deviation of the residu-
als. In the X- and Y-direction these are 0.0037, 
0.0082 mrad, respectively. This can probably be 
attributed to the fact that the deformation or inclina-
tion is affected by other influencing variables. In 
addition, it is possible that the nature of the learning 
data, which contains no unique (or very similar) 
relationships between input and output variables, 
can lead to confusion within the network during the 
training. However, the most important reason is a 
possible response delay of the sensor inclination, an 
issue that should be noted about the cross-
correlation of the input and output variables. In this 
case an upgrade to a dynamic model is required, in 
which this delay is taken into account. 
 
 
5.2 The dynamic model  
 
The basic idea of the dynamic modeling is that the 
state of the deformation at the time (t) is depending 
on the previous states of the input variables (tem-
perature and level) and (possibly), of the output 
variables itself.  

To investigate the dependence between the exter-
nal influences (i.e. tide and temperature) on the 
position of the measuring pillar in the geodetic la-

boratory, the cross-correlation between the respec-
tive influence values and the respective axes of the 
sensor was calculated. The results are presented in 
Figure 10 and Figure 11. 
 

 
Fig. 10 Cross-correlation between temperature and sensor 
 
The measurement pillar responds clearly to the tem-
perature change. With a correlation coefficient of 
0.73 a clear correlation can be observed in X. On the 
other hand, with a correlation coefficient of 0.39, a 
far more moderate one can be observed in Y. The 
reaction starts about one hour and ten minutes later. 
Presumably, the storage of the pillar and the elasto-
mer beneath are responsible. This responds to the 
temperature change and these changes contributes to 
deformations. 

 
Fig. 11 Dynamic model: Cross-correlation between level and 
sensor 
 
A clear correlation can be detected transversely to 
the flow direction of the river. The correlation is on 
the wall -0.75 and on the pillar 0.67 (Figure 11). The 
time-shift is approximately 7 hours. The inclination 
is of maximum gradient after 7 hours of level peak. 
 
This paper deals with the modeling of the defor-
mation, so that out of known measurements of influ-
encing variables (temperature and level), the corre-
sponding inclinations of the sensors should emerge 
(prediction). Therefore, the dynamic model is dif-
ferent from the static model, both in number and 
type of input values. That means that the input of the 
network are no longer only T(t) and P(t), but also 
T(t-1)… T(t-k1) and P(t-1)…P(t-k2), whereas the 
parameters k1, k2, represent the response delay of 
the system on the influencing factors. Thus, the pa-
rameters represent the temporal shift (offset) of the 
inclination towards the temperature and level. In this 
case the network has the following structure: 
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Fig. 12 Dynamic network: General structure  
 
The used scenario of the dynamic model in this 
work can be described as follows: 

 
 
Based on the reaction delay of the outputs on the 
input variables (observed in the correlation investi-
gation procedure), it is possible to assign the values 
1-7 to the factor k. Should the model be described 
in more detail, two factors of delay for each (tem-
perature and level) ought to be considered then. To 
simplify matters, only the largest delay, specifically 
the 7 hours (delay towards level), was taken. 
 
The procedure for determining the network struc-
ture or number of hidden neurons, the learning al-
gorithm etc. is exactly the same as the one followed 
for the static model. The procedure is not repeated 
here. Instead, the same configuration, with the net-
work that was chosen for the static model, should 
be used for comparison purposes, hence with 20 
hidden neurons and LM-learning algorithm. 
 
Normally the response delay has to be eliminated 
before working with ANNs  [Heunecke 2013, chap-
ter 14.2 and 14.4], for instance with a linear model 
and time series analysis. The residuals from the 
linear model can then be argument for ANNs.  
 
In the following, the results of the two models are 
compared: 
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Spatial-time independent prediction 
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Very poor regression in validation- and 
test data of 0.68 and 0.65. 
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Coverage of the residuals between targets 
and network output=  
[-0.00883 _ 0.01281] 
i.e. lower deviation  
p.s.both graphics are standardized, so that 
the relative difference can be recognized.  

Coverage of the residuals between 
targets and netork output=  
[-0.01876 _ 0.0339] 

Standard deviation of the residuals: 
Direction X= 0.0026 
Direction Y= 0.0038 
Particularly in the Y-direction the dynam-
ic model indicates considerable im-
provement. The standard deviation in this 
case is less than half compared with the 
static model. 

Standard deviation of the residuals: 
Direction X= 0.0037 
Direction Y= 0.0082 

Fig. 13 Comparison of the two models 
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The results of the dynamic modeling are presented 
in Figure 14, in form of residuals between the ob-
served output values and the output values calculat-
ed in the trained network. The residuals derived 
from the dynamic model are obviously smaller than 
those from the static model, presented in Figure 9. 
This corresponds to the grown expectation caused 
by the analysis of performance plot, regression plot 
and error histogram. 
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Fig. 14 Dynamic model: Inclinations of the sensor and resid-
uals  
 
 
5.3. Prediction  
 
To check the validity of the trained network in the 
dynamic model for future determination of the in-
clination of the sensor due to the present values of 
temperature and level (i.e. to check the prediction 
ability of the network), the learning data were di-
vided into two sub-sets: approximately 70% of the 
learning data should be used to train the network 
(or to optimize the model), and the rest will be used 
for independent validation (or for the network veri-
fication). Here is to differentiate between this veri-
fication part of 30% and the validation data-set, 
which is used to stop the learning of the network. 
Figure 15 shows the results in two parts: on the left, 
starting on the green line, the results are based on 
training data; on the right, the results are based on 
the remaining data whose corresponding inclination 
is to be determined. 
In relation to the residuals of the respective parts, it 
is clear that the network performance concerning 
the verification data-set is significantly worse than 
the one concerning the training data-set. With re-
gard to the relating performance plot of the trained 

network, which is represented on the above part in 
Figure 16, this result is expected. For the blue curve, 
representing the training performance, it drops ex-
tremely compared to the green curve (validation) 
and the red curve (test). This means, when new data 
is added to the network, it is expected that there 
won’t be results of the same quality as in the case of 
the learning data. This is confirmed by the regres-
sion plot on the beneath part in Figure 16. Here, it is 
illustrated that the regression factor for the training 
data is significantly better than for the test- and vali-
dation data, as well. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 15 Dynamic model: Inclination and Residuals for train-
ing and prediction datasets    
 
This may lead to the interpretation that further influ-
ences or long-period changes and effects have not 
been included in the modeling. The used dynamic 
model includes as input values, for example, only 
information about the influence values (temperature 
and level) and no information about the state of the 
object respectively the inclination of the sensors, 
which could reflect this long-period effect. 
But on the other hand, they are more difficult to 
train since they have to learn sequential, temporal 
varying patterns. Another important result of this 
study is that the use of the same gradient-based 
learning algorithm to train a static and a dynamic 
network, with exactly the same learning parameters, 
can result into completely different performances. 
This can be explained by the fact that the calculation 

TRAIN 
Std-X=    0.0022 
Std-Y=    0.0044 

VALIDATION 
Std-X=    0.0033 
Std-Y=    0.0108  
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of the gradient is much more complex for dynamic 
networks, because the network-output (at a specific 
time-moment) is not only depending on the input of 
this time but also, on the progress of the sequence 
input. Furthermore, for networks with feedback 
connection, there is also dependence on the pro-
gress of the outputs. 
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Fig. 16 Above part: performance plot of the trained network; 
Beneath part: regression plot 
 
 
6.  Conclusion and Outlook 
 
In this article, the static- and the dynamic modeling 
of inclinations through ANN-modeling have been 
presented. The performance of the two tested mod-
els has been compared and the more efficient mod-
el, namely the dynamic model, was examined for 

the ability of the prediction. In this process, no new 
data was provided, but the available learning data 
was divided in two sets: a training-set and a verify-
ing-set respectively (validation part). Examinations 
within the scoop of this contribution have shown 
that dynamic neural networks normally are more 
efficient and capable in comparison with the static 
neural networks because they have more parameters 
for adaption due to temporal series inserted into the 
model. Consequently, they are more flexible and, 
because of their increased degree of complexity, 
they are more realistic in modeling the context be-
tween network’s input and output. The investigation 
of the performance of static and dynamic neuronal 
networks for delay-models reveals that the dynamic 
networks provide significant better results. Although 
the results of the static network aren’t poor, the 
adaptivity of the dynamic network is superior in 
such cases. Therefore, it is recommended to define 
in advance which connections exist between input- 
and output value respectively if there are temporal 
correlations. 
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