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Summary 
Reliable information about the buildings interior geometry is necessary for many purposes ranging 
from facility management applications to the prediction of earthquake induced hazards on man-
made structures. But floor plans are often not available, not updated or not acquired in three 
dimensions. Therefore gathering three-dimensional geometric data of buildings is becoming 
increasingly important. Traditional surveying techniques are time consuming and expensive. From a 
practical point of view, indoor surveying is based on designing plots with a CAD tool, where the 
dimensions are taken from angular and distance measurements. Most often the measurements are 
taken on site and the drawing is done back at the office. But what should be done if some 
measurements are wrong or have been forgotten? What should be done if the outer walls of one 
floor plan do not align with the walls of another floor plan? The surveying staff will eventually have 
to return to the building for re-measuring.  

This presentation shows how to model and parameterize a three-dimensional building geometry in a 
non-standard form that is suitable for a fast data acquisition based on least squares adjustment as 
tool of analysis.  In contrast to existing CAD or GIS data models, the approach discussed does not 
use any coordinates, but is based on planes represented by their normal vectors.  

As a consequence, the number of unknown parameters is significantly reduced, resulting in fewer 
measurements needed to be observed. The original measurements are part of the data model 
enabling software tools to be applied for statistical testing, robust estimation and stepwise 
refinement of the model precision.  

The data model, presented here, addresses the three-dimensional geometric and topological 
structure of a building in a way that is suitable for all purposes of engineering surveying and least 
squares adjustment.  

During the application it will be easy to determine the intersecting planes in each node, just by 
traversing the model instance, because the explicitly specified topology is an inherent part of the 
data model. One plane can carry multiple faces (plane-sharing), a normal vector can be referred by 
multiple planes (normal-sharing) and a parameter can be referred by multiple normal vectors 
(signed parameter-sharing).  
 
Introduction 
 
Gathering three-dimensional geometric data of buildings is becoming increasingly 
important. Virtual 3D city models and Building Information Models (BIM) require 
reliable information about the buildings interior. Floor plans are often not available, 
not updated or not acquired in three dimensions. Traditional surveying techniques are 
time consuming and expensive. From a practical point of view, indoor surveying is 
designing plots with a CAD tool, where the dimensions are taken from angular and 
distance measurements. Most often the measurements are taken on site and the 
drawing is done back at the office. But what if measurements are wrong or have been 
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forgotten? What if the outer walls of one floor plan do not align with the walls of 
another floor plan? Probably the surveying staff will then have to return to the 
building for re-measuring.  
 

 

Fig. 1: Common errors during indoor data capture 

This short paper shows how to parameterize a three-dimensional building geometry 
in a non-standard form that is suitable for fast data acquisition and least squares 
adjustment.  In contrast to existing CAD or GIS data models, the discussed approach 
does not use any coordinates, but describes planes by their normal vectors (Fig. 2).  

 
Fig. 2: a) point representation b) plane representation c) plane intersection 

Using this approach, the number of unknowns is significantly reduced, resulting in 
fewer measurements to be observed. The original measurements are part of the data 
model enabling the software for statistical testing, robust estimation and stepwise 
refinement of the model precision.  
 
Data model 
 
The data model addresses the three-dimensional geometric and topological structure 
of a building in a way that is suitable for engineering surveying and least squares 
adjustment. For these purposes three main assumptions are made: 
Firstly, the model must represent visible and observable parts of a building. Therefore 
Boundary-Representation with its explicitly specified topology was chosen. 
[Oosterom 2002] gives several reasons for this decision in context of surveying. 
Entity types of this domain are: Topological primitives node, edge, face, solid and the 
entity types for the topological orientation half-edge and loop.  
Secondly, stochastic observations and deterministic constraints are integrated into 
the data model (Fig.3). This is because surveying engineers solve inverse problems. 
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An inverse problem is estimating the model parameters from a set of measured data. 
In the case of indoor surveying the model parameters to be estimated are those 
describing the building geometry. The data given are measurements gathered with 
surveying instruments. From the surveying engineer point of view, the parameters of 
the absolute geometry (secondary data) are derived from the original measurements 
(primary data). What is the benefit of this approach in everyday engineering life? A 
stochastically correct parameterisation allows for applying statistical tests during the 
process of geometric and topological generalisation. Storing the original 
measurements is robust, since gross errors and poor functional models (EDM offset, 
scale) remain identifiable.  

 

Fig. 3: A plane-based data model for 3D geometry, topology and indoor 
measurements 

Thirdly, geometry is parameterised with planar surfaces [Gründig 2002]. The 
prevalent method for specifying location is making use of point representation, where 
every node is attached with three coordinate values x,y,z in order to specify its 
position. Additionally, implicit or explicit assumptions are made on planarity, 
parallelism and perpendicularity of faces [Kazar 2008]. The main idea of the 
discussed approach is to reduce geometric redundancy by replacing point 
representation by surface representation. A plane is represented by the values of its 
normal vector nx,ny,nz and the orthogonal distance d to the origin. This 
parameterisation is known as the Hessian Normal Form: 
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By traversing the model instance, it is easy to determine the intersecting planes in 
each node, because the explicitly specified topology is an inherent part of the data 
model. The point coordinates can be calculated “on demand”, solving: 
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Similar approaches use half-spaces in order to establish a closed polytope algebra that 
can be represented with finite digital representation of numbers [Thompson 2008]. 
Please note that in our model one plane can carry multiple faces (plane-sharing), a 
normal vector can be referred by multiple planes (normal-sharing) and a parameter 
can be referred by multiple normal vectors (parameter-sharing). 
 
Least Squares Adjustment 
 
Least Squares Adjustment allows for the integration of redundant measurements. The 
equations of the general method consist of observations, unknowns and constants. 
Using adjustment techniques in 3D GIS/CAD the model can be attach by mutually 
checking measurements/constraints, accuracy properties of measurements and 
unknown parameters. The resulting geometry is reliable and attached with reasonable 
accuracy information. 
 
Stochastic Observation Equations 
 
Stochastic observations or soft constraints do not have to be fulfilled strictly. For 
parametric adjustment the observations l and the residuals v (noise) are expressed as 
nonlinear functions of the unknowns x. This domain of information is considered as 
being stochastic, because the residuals are considered as random variables and are 
optimized with the Least Squares Adjustment. 
 

One type of observations are distances (Fig. 4). Distances are measured with ruler, 
measuring tape, laser distance meter or simply by pacing. Although the following 
functions describe relations between topological primitives, the corresponding 
geometric representation can be determined easily by navigating through the 
topologic-geometric data structure. 
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Fig. 4: Visualisation of stochastic observations (inverse picture) 

Distance Face-Face. If a distance l between the parallel faces located on planes i and 
j is measured the observation equation is: 

j il v d d+ = − (3)

Distance Face-Node. If a distance l between the faces i and node j∩ k∩ l, that is the 
intersection of the planes j, k and l, is measured the observation equation is: 
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Distance Node-Node If a distance l between node i∩ j∩ k and node l∩ m∩ n is 
measured the observation equation distance node-node is described as: 
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Local spherical coordinates ( ), , Tr θ φ (Fig. 5) are taken with the total station at 

position ( ), , T
T T Tx y z . Only one rotational degree of freedom ω remains for each 

instrumental set up, because the rotating axis of total station is adjusted to the 
vertical.  The three components of ( ), , Tr θ φ  are considered to stochastically 
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independent. The observation equation of type spherical point i on face j is described 
as a conditional equation: 
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Deterministic Constraints 

Deterministic constraints have to be fulfilled strictly; therefore no stochastic part 
(residual v) is contained in the mathematical function. Deterministic constraints have 
the advantage of reinforcing the estimated solution by increasing the (stochastic) 
redundancy. The disadvantage is that wrongly specified or linear dependent 
constraints could lead to singular equation system. 
Normal vector. Since the Hessian Normal Form is valid only if the normal vector is 
of length 1, the algorithm must ensure the normalisation of the normal vector n . 

2 2 2, 1x y zn n n n n n= = + + = (7)

Angular Constraints are attached to the model for ensuring the observational 
integrity (like parallelism of faces that are connected by a distance measurement) and 
to find a mathematical description for “obvious” situations like “wall perpendicular to 
floor” or “floor parallel to ceiling”. Angular constraints are of type “Face-Face”, 
“Face-Edge” or “Edge-Edge”. 
Angular Constraints Face-Face. If the planes i and j of two faces are perpendicular  
an additional constraint is attached to the system of equations. The constraint is given 
by the normal vectors dot product. 

, 0...i jn n perpendicluar= (8)

The constraints “face-edge” and “edge-edge” are modelled equivalently [Clemen 
2008].   
A good practice is to process the angular constraints as “soft constraints” in a first 
step by simply attaching a residual v to each right hand side of the equation. If the 
condition passes the statistical test, it can be considered as being deterministic in a 
second step. 
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Fig. 5: Exemplary workflow to test the data model 

Exemplary Workflow  

In order to test the data model (Fig. 5), we use Google SketchUp as “Topology 
Editor”. The 3D Model is draught on site. The exported Colada model is converted to 
an XML model instance that could be parsed and processed by our OpenGL based 
“Observation Editor”. The measurements are collected using total station and laser 
distance meter. Back at the office they are adjusted with an “Adjustment Tool” and 
finally exported to dxf-format.  
 
Future Work 
 

Future work will be done in three domains: Use case evaluation, statistical testing and 
GUI integration. Evaluating use cases will include larger survey projects, 
deformation analysis, 3D data enhancement of existing model instances and the data 
model’s application during the design phase of a building. The possibilities of 
statistical testing are not jet fully explored. Efforts will be made on applying well 
known test standards to the surface-based parameterisation. Currently we are working 
on the integration of our C++ algorithms to the Google SketchUp GUI in order to 
enable the user to work with only one software interface.  
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