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Abstract: Even though terrain-based navigation has been fesgekars to navigate airborne
platforms, a continuous exchange of precise gettwtaformation between the imaging and
navigation modules to improve the overall errorirakion is a novel idea, which should
significantly increase the system’s fault toleranoea variety of situations, including
terrestrial systems. Presently, the navigationtgwia are predominantly based on a GPS or
integrated GPS/INS systems, supporting typicalsimgle imaging sensor, with no feedback
between the sensory data processing filters. M#teoresearch in terrain-based navigation
proposes the use of optical measurements from ragebionagery, although the concept of
exploring LiDAR-based terrain navigation has alseeib reported. Recent technological
advances in imaging sensors improved the potefatiabbtaining feedback from image data
for navigation, as in general, higher spatial samgpland positioning accuracy can be
achieved. This paper is concerned with derivingigation information from LIiDAR data,
and it presents a trajectory recovery method basediDAR data using reference terrain
surface models. Under normal circumstances, thedewates of LIDAR points are calculated
from position and attitude, provided by the GPS/IN&vigation solution, boresight
parameters between navigation and imaging sensscan angles and laser range
measurements. If GPS signals are lost, the codedirad LIDAR points can be still computed
using an INS-only solution; obviously, with growimgrors in time. If reference surface data
exist, they can be used for recovering the LIDARs®e trajectory, as long as the INS drift is
under a certain threshold. This task is based oiac matching, where the quality of one
dataset is strongly location-dependent, and ifsisdace matching is successful, the sensor
trajectory is estimated from the matching results.assess the performance of the proposed
method simulated LiDAR data was used and an amatysithe feasibility of the method is
provided.

1. INTRODUCTION

In GPS/INS (Global Positioning System/Inertial Ngation System) navigation systems, the
GPS measurements are used to correct and calith@téNS typically via a conventional
Kalman filtering algorithm. However, satellite ngation signals are extremely vulnerable to



easxx'\ﬂ% 13th FIG Symposium on Deformation Measurement and Analysis
W %@5 4th IAG Symposium on Geodesy for Geotechnical and Structural Engineering
cnal

e LNEC, LISBON 2008 May 12-15

interference, primarily due to their low power. bigintional interference sources include
broadcast television, mobile satellite servicegraulide-band communications, over-the-
horizon radar and cellular telephones (Cagbll., 2001). As soon as GPS measurements are
lost, the INS begins to drift as there are no pasdt fixes for sensor calibration. For example,
aircraft-grade INS can typically maintain horizdnpasition accuracy within 100 m through
GPS outages of more than 10 minutes. However, loasrINS, common in guided weapons,
unmanned air vehicles and general aviation (cijl@rcraft, can only maintain this accuracy
for a few minutes at best. To attain robust nawgatin a GPS jamming environment,
reversionary navigation systems are required, siglierrain-referenced navigation (TRN)
techniques (Runnalkt al., 2005).

Haaget al. (2005, 2006) presented a laser range scanner baseghtion system for aircraft
guidance. Their referencing is based on matchiserlpoints from the onboard LiDAR (Light
Detection and Ranging) system to a stored DEM (Bidtlevation Model). They use the
criterion of minimum SSE (Sum of Squared Error)jckhs very similar to MAD (Minimum
Absolute Sum) of TERCOM (Terrain Contour Matchirogpnceived by Chance-Vought in
1958), for referencing method. Bergman (1999) uthedd point mass filter and non-linear
Bayesian approach for aircraft terrain navigatiMadhavanet al. (2003) introduced an
unmanned ground vehicle navigation system usind_-BBAR data matching which applies
an ICP (Iterative Closest Points) algorithm, a teghe introduced by Be#t al., (1992) for
3D shape registration. Hab# el., (2006) suggested automatic surface matching method
which uses ICP and MIHT (Modified Iterated Houglafisform) for registering LIDAR data.
Rusinkiewiczet al., (2001) provided a speed comparison of ICP convergevith respect to
different sampling, matching, weighting methods, et

The primary advantage of using LIDAR for terrairvigation is that it provides explicit 3D
observations that can be directly used for surfamaparisons. In contrast, for using optical
imagery for TRN, multiple overlap (at least two fetereo) is needed to recover the third
dimension, which can significantly increase thecpssing requirements. Furthermore, the
robustness of surface extraction techniques gdpetapends a lot on the data, in terms of
object space complexity and brightness conditions.

In general mapping practice, LIDAR surfaces coule dightly distorted due to usual
navigation errors such as varying quality of theigation solution, and consequently, LIDAR
strips can be shifted and/or rotated or even defdrriror example, minor discrepancies can
be frequently observed between overlapping sthipsdan be easily corrected by various strip
adjustment methods. The extended loss of GPS, hewesll result in a drifting navigation
solution, which ultimately leads to an unacceptdblesl of navigation accuracy, so that no
LiDAR surface can be created. Interestingly, theiggtion solution tends to drift in relative
terms slower than in absolute terms. In other wottie position and attitude of the
reconstructed sensor trajectory will smoothly dedesm the true trajectory. From the
perspective of the LIDAR data, it means that theonstruction of a LiDAR surface for a
smaller area from a shorter navigation solution reult in a surface, which is georeferenced
with significant absolute errors, such as sizegasition and orientation offsets, but, more
importantly, its shape is nearly preserved.

The motivation for this research is the exploitatiof the fact that the individual LIiDAR
profiles are moderately distorted in a drifting ig@tion solution, since the time used to
collect this information is very short, and duritngit time the aircraft position and attitude do
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not change significantly and the navigation dsfinearly constant. In this case, the shape of
the surface reconstructed from the LIDAR data, thahe relative positions of the LIDAR
points, mainly depends on the ranging accuracythedotating mirror encoder accuracy —
both are relatively stable and independent from d¢ilger components of the system.
Therefore, smaller segments of a strip can be redtohith their counterparts from a
reference, if available, and the results could $eduo provide a feedback to the navigation
solution. The surface matching will result in 3DDIAR point coordinates that would have
been obtained if the navigation data were cori@atpurse, the accuracy of these coordinates
depends on the reference surface accuracy andutiesol point distribution, and the
performance of the matching algorithm. Similarlye tsensor trajectory with similar accuracy
terms is estimated and can be used for corredtiegnavigation solution. This paper provides
an initial analysis on the feasibility of using LAR data and reference surfaces matching to
support navigation solution under no GPS condition.

2. CONCEPT

For this investigation, the airborne scenario wassaered with the assumptions that the GPS
signal was lost and a reference surface is eitliailadle or acquired during the previous
overflight under strong GPS geometry. Once the GigBal has been lost for some time
during a LIDAR strip measurement, the measured LRDAurface becomes gradually
distorted (i.e., LIDAR scanlines are preserveddlative terms, but their misorientaton with
respect to each other and to the reference frammiging with time). Under the assumption
that the same area was either covered earlier iha@nLiDAR measurement with good GPS
availability or surface DEM was available, the refece surface can provide strong geometric
constraints to the misoriented surface collectedeumo or limited GPS conditions. This, in
turn, enables surface-based correction that allavdérect feedback to the error calibration
loop and, thus, can result in the ultimate improgamof the georegistration solution. The
concept of improving the navigation solution usld®AR profile matching is illustrated in
Figure 1 (note that profiles/narrow sub-strips oegd in different over-flights are different,
so the figure is simplified for illustration purp®s The conceptual information flow within
the closed-feedback error loop is presented inrEigi Naturally, when GPS signal is
available, selected profiles or features of thenarice and the newly collected surfaces will
be used to provide strong geometric constraintsgantegrated filter.
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Figure 1 - The concept of profile/surface matcHiBtyip 2) to a reference (existing) surface
(Strip 1) to improve direct georeferencing undeG#S conditions. Strip 1 can be a part of
the earlier collected surface data during the eini@ssion, if no reference surface is

available.
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Figure 2 - Conceptual information flow in the clddeedback error loop.

2.1. Surface Matching

Surface matching, the automatic co-registratiopadfit clouds representing 3D surfaces, is an

essential and rather difficult task. The generalcept of the surface matching process is
simple: first, differences should be identified amdeasured between two surfaces

(overlapping strips), and then, using a geometricdeh the parameters of a suitable
transformation must be determined that can desdtieespatial relationship between the
surfaces. Unfortunately, the implementation of thisproach is not straightforward, as
establishing the required correspondence between swfaces is rather difficult. This
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difficulty comes primarily from the irregular digtution of points in the LIDAR point cloud,
which means that the same object space is randsamhpled in the spatial domain in every
strip, and thus, there are no conjugate points d&twthe two point clouds. Therefore, either
interpolation of data is needed (e.g., conversioa tommon grid), or shape-based techniques
(based on features extracted from a group of positeuld be used instead of conventional
point-based methods. Obviously, surface matchinghaus that can directly deal with
irregular data are preferred.

2.2. Strip Deformation Modeling

Many surface matching methods assume that theftramstion between the two surfaces,
such as between the LIDAR point cloud and the esfee ground surface (DEM), is

adequately modeled by a rigid body transformativhile this is the case for normal LIiDAR

surveys, where no loss of GPS signal is expectedor@ general solution allowing for strip

deformation is definitely necessary for a LiDAR fages computed based on a drifting
navigation solution. Since moderate surface deftanas expected for shorter time periods,
a 3D affine transformation represents an adequateemwhich takes the general form:

Xq
XP tO tl t2 t3 y
Yo Tl 6 b Zq (1)

q

Where &, Yp. %) and &g, Yq Z) represent the LIDAR surface and reference points,
respectively, andl (for i=1...12) represent the 12 parameters of the transfioom the actual
number of the independent parameters may varyexample, six parameters are needed to
define a rigid body transformation.

2.3. ICP (Iterative Closest Points) Algorithm

ICP algorithm is an efficient method for registoatiof 3D shapes (Best al., 1992). The ICP
algorithm finds the closest points between two pegts to be co-registered. For example, a
3D rigid body transformation could be applied betwethe corresponding point sets to
determine translations and rotations iterativelyg. Support computing efficiency, a kD-tree
structure (Samet, 1990) is used for finding clogmsints. The target function of the ICP
algorithm can be expressed in a general form as:

ming, > [M; - (RD, +T)|° 2)

where subscripi refers to the corresponding (closest) points & #setsM (model or
reference) and (data),;R is a 3 x 3 rotation matrix; an@l is a 3 x 1 translation vector
(Madhavaret al., 2003). The reasons for selecting the ICP methaxlimapproach are: 1) no
need for point correspondence, 2) flexibility wittspect to surface deformation, both rigid
body and deformation models can be used, 3) rgimrfbrmance for surfaces with moderate
complexity and high overlap, and 4) simplicity bétimplementation.
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3. EXPERIMENTS

To support algorithmic validation and performanesting, various tests were carried out
using simulated and real data. The general pracetsdes the segmentation of the LIDAR
strips to sub-strips, which are acquired in a netdy short time and, consequently, cover a
smaller ground area. Next the ICP-based surfacehimgf is performed for various navigation
solutions, which represent varying search spa¢kaneference surface. Finally, based on the
surface matching results, the sensor trajectorgdenstructed and compared to the reference
trajectory.

3.1. LiDAR Simulator

In mainstream mapping practice, LIDAR data prodatisiot include the measurements used
to form the navigation solution, that is the rams® measurements, such as scan angles,
ranges, etc., but rather a point cloud is provigeterms of the x, y, and z coordinates and
intensity data in a selected mapping frame. Howeawesupport the concept presented here, a
LiDAR simulator was developed to generate LiDARajdbased on this information, as,
generally, it is available from LIDAR sensors.

The LIDAR simulator can create object space coatdis of LIDAR points based on flying
time, flying speed, simulated navigation solutitaser repetition rate, scan rate, scan angle
and boresight parameters with the assumed errefsleln addition, the ground surface must
be provided either analytically or as a DEM to seas reference. The navigation solution is
similarly defined by the sensor trajectory and mta¢ion. The errors are independently
introduced in the range and scan angle measurenject coordinates of trajectory, and
boresight angles and offsets.

3.2. Reference Surface

To support testing, two reference surfaces weratede (1) a conventional DEM, and (2)
simulated LiDAR surface, based on the DEM surfabat twas used for calculating
coordinates of LIDAR points. For the DEM referenserface, a simulated urban area,
including modestly undulated terrain, with well tdisuted buildings of varying sizes, was
created, as shown in Figure 3.

Figure 3 - Simulated urban area as a DEM surface.
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The LiDAR reference surface was generated basdbdeoreference DEM, reference trajectory
definition, boresight parameters, and LIDAR sensmameters. In general, typical parameter
settings as well as error terms were used; the fapetition rate was set to 70 kHz and the
platform speed was fixed at 220 km/h. During thd> I@rocessing, only the small parts,
subsets, of the reference surface were used, whesze of the search space was determined
from the assumed errors in position and attitudetduthe drifting navigation solution.

3.3. LiDAR Surface

The LIDAR surface that represents the newly acquitddAR data was generated by the
LiDAR simulator. This surface is assumed to beadted at various levels due to the varying
duration of GPS loss of lock. The other parametsush as laser parameters, errors bounds,
and boresight parameters, were the same as thesk fas the creation of the LIDAR
reference surface. Various sub-strips were seldobed the LIDAR surface data, representing
different object areas and different navigationusoh errors, which resulted in varying
rotational and positional offsets of the sub-stvigh respect to the reference LIDAR surfaces.
Figure 4 shows an example of the search spacetatdd sub-strip, and an undistorted sub-
strip for a one-second LiDAR data acquisition time.

Test Data for 1 sec acquisition time

- x.//< 200

3a0

Search space 50 300
+  Distorted sub-strip X [m]
+  Undistorted sub-strip

Figure 4 - Comparison of search space, distortbessip, and undistorted sub-strip.

The size of a sub-strip used for surface matctardgtermined by balancing the impact of two
phenomena on the ICP-based matching. First, thgelothe sub-strip is in the along-track
direction, the more robust is the surface matckiigtion. Matching square areas is likely to
produce a quality solution in all direction, wha@ elongated rectangle could result in poor
along-track registration between the two surfaéesgxample, small angle errors in surface
matching can produce significant trajectory disptaents especially in along-track direction,
as shown in Figure 5. The larger size of the stip;dtowever, means longer acquisition time,
which results in the increased strip deformatioher€fore, generally, the sub-strip size
should be as big as possible, but only to the paimtre surface deformation can still be
ignored.
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Figure 5 - Large displacements in trajectory dusnall angular error in surface matching.

3.4. Results

The results obtained by using the ICP algorithmeweased a rigid-body model, so three
rotation angles and three translations are modgledransformation between the distorted
sub-strip and search space. The sensor platfoijectoay was recovered by applying these
transformation parameters to the distorted nawgatsolution. The sub-strip matching
accuracy (i.e., the performance of the ICP methwd} calculated from the differences
between coordinates of the transformed sub-stigs€d on the ICP matching results) and
reference surface (undistorted sub-strip). Theettayy reconstruction accuracy was
calculated in a similar way. Both the surface miaghaccuracies of sub-strips and the
corresponding accuracies of the reconstructedctajes for different data acquisition times
are listed in Table 1.

Acquisition Sub-strip [m] Trajectory [m]
e Num_b er of Along- | Across- , Along- | Across- :
(sec) points track track A track track A
1 70k +0.18 +0.26 +0.05 +1.39 +0.05 +0.42
2 140k +0.29 +0.24 +0.01 +1.35 +1.08 +0.42
3 210k +0.13 +0.22 +0.04 +0.50 +0.93 +0.45
4 280k +0.06 +0.21 +0.01 +0.38 +0.76 +0.45

Table 1- Surface matching and trajectory reconstm@recisions (standard deviation).

The test results show that surface matching camigwoan acceptable navigation solution
under no GPS conditions using a typical urban enwrent. The standard deviations of the
reconstructed trajectory are less than +1m in iaflction for more than two-second LIDAR

data acquisition times (accuracy of along-trackdion improves by increasing LIDAR sub-
strip acquisition time). Surprisingly, the standateviations of across-track direction are
larger than that of along-track direction for bathb-strips and trajectories for acquisition



easxx'\ﬂ% 13th FIG Symposium on Deformation Measurement and Analysis
W %@5 4th IAG Symposium on Geodesy for Geotechnical and Structural Engineering
cnal

e LNEC, LISBON 2008 May 12-15

times longer than 2 sec. This can be explaineditigreint occlusions of the buildings and
less adequate distribution of the surface pointkénlarger scan angle areas (i.e., at the swath
boundaries). Figure 6 shows the search space anahdkching result of a distorted sub-strip
and an undistorted sub-strip for one second admuigime.

Test Result for 1 sec acquisition time

130 g i
E 105
W~ S0

550

Search space
+  Matching result
+  Undistorted sub-strip

Figure 6 - Comparison of search space, matchingtresd undistorted sub-strip

4. CONCLUSIONS

This paper describes the initial results of apgyi@P-based surface matching technique to
implement a terrain-referenced navigation supporttifie navigation of airborne platforms
during GPS gaps. The imaging sensor used to implethe TRN method is an airborne
LIDAR system, which can typically acquire a surfamefew points per fmdensity with
decimeter level accuracy, provided a good navigasiolution is available. If GPS signal is
lost for some time during a LIDAR strip acquisitighe navigation solution will start drifting
and the measured LIiDAR surface will become distbrt€he distortion means growing
positional and attitude offsets and a deformatibthe strip, whose rate is relatively slow for
short time periods. Therefore, if a reference améh known surface is available, then the
disoriented and slightly deformed LIDAR surface dasm matched to the reference and a
correction transformation can be determined, whieimn be used as a feedback to the
navigation solution. The reference surface couléibexisting DEM or may be provided by
an earlier LiDAR survey with good GPS availabilifyhe surface-based correction that allows
a direct feedback to the error calibration loophef navigation solution and, thus, can result in
the ultimate improvement of the georegistratiorugsoh. The ICP algorithm, offering several
advantages over other surface matching techniques,selected here for surface matching.
Several data sets with different acquisition tinvesre tested. The results show that the
standard deviations of along-track, across-tranH, leeight directions of trajectory are +0.38
m, +0.76 m, +0.45 m, respectively, for a four-setaacquisition time, using data of a
simulated urban area. These results are quite pnognand additional testing is needed to
better characterize the limits as well as perforreguotential of the technique.
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