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Abstract: Even though terrain-based navigation has been used for years to navigate airborne 
platforms, a continuous exchange of precise geolocation information between the imaging and 
navigation modules to improve the overall error calibration is a novel idea, which should 
significantly increase the system’s fault tolerance in a variety of situations, including 
terrestrial systems. Presently, the navigation solutions are predominantly based on a GPS or 
integrated GPS/INS systems, supporting typically a single imaging sensor, with no feedback 
between the sensory data processing filters. Most of the research in terrain-based navigation 
proposes the use of optical measurements from airborne imagery, although the concept of 
exploring LiDAR-based terrain navigation has also been reported. Recent technological 
advances in imaging sensors improved the potential for obtaining feedback from image data 
for navigation, as in general, higher spatial sampling and positioning accuracy can be 
achieved. This paper is concerned with deriving navigation information from LiDAR data, 
and it presents a trajectory recovery method based on LiDAR data using reference terrain 
surface models. Under normal circumstances, the coordinates of LiDAR points are calculated 
from position and attitude, provided by the GPS/INS navigation solution, boresight 
parameters between navigation and imaging sensors, scan angles and laser range 
measurements. If GPS signals are lost, the coordinates of LiDAR points can be still computed 
using an INS-only solution; obviously, with growing errors in time. If reference surface data 
exist, they can be used for recovering the LiDAR sensor trajectory, as long as the INS drift is 
under a certain threshold. This task is based on surface matching, where the quality of one 
dataset is strongly location-dependent, and if the surface matching is successful, the sensor 
trajectory is estimated from the matching results. To assess the performance of the proposed 
method simulated LiDAR data was used and an analysis on the feasibility of the method is 
provided. 

1. INTRODUCTION  

In GPS/INS (Global Positioning System/Inertial Navigation System) navigation systems, the 
GPS measurements are used to correct and calibrate the INS typically via a conventional 
Kalman filtering algorithm. However, satellite navigation signals are extremely vulnerable to 
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interference, primarily due to their low power. Unintentional interference sources include 
broadcast television, mobile satellite services, ultrawide-band communications, over-the-
horizon radar and cellular telephones (Caroll et al., 2001). As soon as GPS measurements are 
lost, the INS begins to drift as there are no positional fixes for sensor calibration. For example, 
aircraft-grade INS can typically maintain horizontal position accuracy within 100 m through 
GPS outages of more than 10 minutes. However, lower cost INS, common in guided weapons, 
unmanned air vehicles and general aviation (civilian) aircraft, can only maintain this accuracy 
for a few minutes at best. To attain robust navigation in a GPS jamming environment, 
reversionary navigation systems are required, such as terrain-referenced navigation (TRN) 
techniques (Runnalls et al., 2005). 

Haag et al. (2005, 2006) presented a laser range scanner based navigation system for aircraft 
guidance. Their referencing is based on matching laser points from the onboard LiDAR (Light 
Detection and Ranging) system to a stored DEM (Digital Elevation Model). They use the 
criterion of minimum SSE (Sum of Squared Error), which is very similar to MAD (Minimum 
Absolute Sum) of TERCOM (Terrain Contour Matching, conceived by Chance-Vought in 
1958), for referencing method. Bergman (1999) used the point mass filter and non-linear 
Bayesian approach for aircraft terrain navigation. Madhavan et al. (2003) introduced an 
unmanned ground vehicle navigation system using 3D LiDAR data matching which applies 
an ICP (Iterative Closest Points) algorithm, a technique introduced by Besl et al., (1992) for 
3D shape registration. Habib et el., (2006) suggested automatic surface matching method 
which uses ICP and MIHT (Modified Iterated Hough Transform) for registering LiDAR data. 
Rusinkiewicz et al., (2001) provided a speed comparison of ICP convergence with respect to 
different sampling, matching, weighting methods, etc. 

The primary advantage of using LiDAR for terrain navigation is that it provides explicit 3D 
observations that can be directly used for surface comparisons. In contrast, for using optical 
imagery for TRN, multiple overlap (at least two for stereo) is needed to recover the third 
dimension, which can significantly increase the processing requirements. Furthermore, the 
robustness of surface extraction techniques generally depends a lot on the data, in terms of 
object space complexity and brightness conditions.  

In general mapping practice, LiDAR surfaces could be slightly distorted due to usual 
navigation errors such as varying quality of the navigation solution, and consequently, LiDAR 
strips can be shifted and/or rotated or even deformed. For example, minor discrepancies can 
be frequently observed between overlapping strips that can be easily corrected by various strip 
adjustment methods. The extended loss of GPS, however, will result in a drifting navigation 
solution, which ultimately leads to an unacceptable level of navigation accuracy, so that no 
LiDAR surface can be created. Interestingly, the navigation solution tends to drift in relative 
terms slower than in absolute terms. In other words, the position and attitude of the 
reconstructed sensor trajectory will smoothly depart from the true trajectory. From the 
perspective of the LiDAR data, it means that the reconstruction of a LiDAR surface for a 
smaller area from a shorter navigation solution will result in a surface, which is georeferenced 
with significant absolute errors, such as sizeable position and orientation offsets, but, more 
importantly, its shape is nearly preserved.  

The motivation for this research is the exploitation of the fact that the individual LiDAR 
profiles are moderately distorted in a drifting navigation solution, since the time used to 
collect this information is very short, and during that time the aircraft position and attitude do 
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not change significantly and the navigation drift is nearly constant. In this case, the shape of 
the surface reconstructed from the LiDAR data, that is the relative positions of the LiDAR 
points, mainly depends on the ranging accuracy and the rotating mirror encoder accuracy – 
both are relatively stable and independent from the other components of the system. 
Therefore, smaller segments of a strip can be matched with their counterparts from a 
reference, if available, and the results could be used to provide a feedback to the navigation 
solution. The surface matching will result in 3D LiDAR point coordinates that would have 
been obtained if the navigation data were correct; of course, the accuracy of these coordinates 
depends on the reference surface accuracy and resolution, point distribution, and the 
performance of the matching algorithm. Similarly, the sensor trajectory with similar accuracy 
terms is estimated and can be used for correcting the navigation solution. This paper provides 
an initial analysis on the feasibility of using LiDAR data and reference surfaces matching to 
support navigation solution under no GPS condition. 

2. CONCEPT 

For this investigation, the airborne scenario was considered with the assumptions that the GPS 
signal was lost and a reference surface is either available or acquired during the previous 
overflight under strong GPS geometry. Once the GPS signal has been lost for some time 
during a LiDAR strip measurement, the measured LiDAR surface becomes gradually 
distorted (i.e., LiDAR scanlines are preserved in relative terms, but their misorientaton with 
respect to each other and to the reference frame is growing with time). Under the assumption 
that the same area was either covered earlier by another LiDAR measurement with good GPS 
availability or surface DEM was available, the reference surface can provide strong geometric 
constraints to the misoriented surface collected under no or limited GPS conditions. This, in 
turn, enables surface-based correction that allows a direct feedback to the error calibration 
loop and, thus, can result in the ultimate improvement of the georegistration solution. The 
concept of improving the navigation solution using LiDAR profile matching is illustrated in 
Figure 1 (note that profiles/narrow sub-strips captured in different over-flights are different, 
so the figure is simplified for illustration purpose). The conceptual information flow within 
the closed-feedback error loop is presented in Figure 2. Naturally, when GPS signal is 
available, selected profiles or features of the reference and the newly collected surfaces will 
be used to provide strong geometric constraints to the integrated filter.  
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Figure 1 - The concept of profile/surface matching (Strip 2) to a reference (existing) surface 
(Strip 1) to improve direct georeferencing under no GPS conditions. Strip 1 can be a part of 

the earlier collected surface data during the current mission, if no reference surface is 
available.  

 

Figure 2 - Conceptual information flow in the closed-feedback error loop.  

2.1. Surface Matching  

Surface matching, the automatic co-registration of point clouds representing 3D surfaces, is an 
essential and rather difficult task. The general concept of the surface matching process is 
simple: first, differences should be identified and measured between two surfaces 
(overlapping strips), and then, using a geometric model, the parameters of a suitable 
transformation must be determined that can describe the spatial relationship between the 
surfaces. Unfortunately, the implementation of this approach is not straightforward, as 
establishing the required correspondence between two surfaces is rather difficult. This 
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difficulty comes primarily from the irregular distribution of points in the LiDAR point cloud, 
which means that the same object space is randomly sampled in the spatial domain in every 
strip, and thus, there are no conjugate points between the two point clouds. Therefore, either 
interpolation of data is needed (e.g., conversion to a common grid), or shape-based techniques 
(based on features extracted from a group of points) should be used instead of conventional 
point-based methods. Obviously, surface matching methods that can directly deal with 
irregular data are preferred. 

2.2. Strip Deformation Modeling  

Many surface matching methods assume that the transformation between the two surfaces, 
such as between the LiDAR point cloud and the reference ground surface (DEM), is 
adequately modeled by a rigid body transformation. While this is the case for normal LiDAR 
surveys, where no loss of GPS signal is expected, a more general solution allowing for strip 
deformation is definitely necessary for a LiDAR surfaces computed based on a drifting 
navigation solution. Since moderate surface deformation is expected for shorter time periods, 
a 3D affine transformation represents an adequate model, which takes the general form: 
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Where (xp, yp, zp) and (xq, yq, zq) represent the LiDAR surface and reference points, 
respectively, and ti (for i=1…12) represent the 12 parameters of the transformation; the actual 
number of the independent parameters may vary, for example, six parameters are needed to 
define a rigid body transformation.  

2.3. ICP (Iterative Closest Points) Algorithm 

ICP algorithm is an efficient method for registration of 3D shapes (Besl et al., 1992). The ICP 
algorithm finds the closest points between two point sets to be co-registered. For example, a 
3D rigid body transformation could be applied between the corresponding point sets to 
determine translations and rotations iteratively. To support computing efficiency, a kD-tree 
structure (Samet, 1990) is used for finding closest points. The target function of the ICP 
algorithm can be expressed in a general form as:  
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where subscript i refers to the corresponding (closest) points of the sets M (model or 
reference) and D (data),; R is a 3 x 3 rotation matrix; and T is a 3 x 1 translation vector 
(Madhavan et al., 2003). The reasons for selecting the ICP method in our approach are: 1) no 
need for point correspondence, 2) flexibility with respect to surface deformation, both rigid 
body and deformation models can be used, 3) robust performance for surfaces with moderate 
complexity and high overlap, and 4) simplicity of the implementation. 



 

 
 

 6 

3. EXPERIMENTS 

To support algorithmic validation and performance testing, various tests were carried out 
using simulated and real data. The general process includes the segmentation of the LiDAR 
strips to sub-strips, which are acquired in a relatively short time and, consequently, cover a 
smaller ground area. Next the ICP-based surface matching is performed for various navigation 
solutions, which represent varying search space in the reference surface. Finally, based on the 
surface matching results, the sensor trajectory is reconstructed and compared to the reference 
trajectory.  

3.1. LiDAR Simulator 

In mainstream mapping practice, LiDAR data products do not include the measurements used 
to form the navigation solution, that is the raw sensor measurements, such as scan angles, 
ranges, etc., but rather a point cloud is provided in terms of the x, y, and z coordinates and 
intensity data in a selected mapping frame. However, to support the concept presented here, a 
LiDAR simulator was developed to generate LiDAR data, based on this information, as, 
generally, it is available from LiDAR sensors.  

The LiDAR simulator can create object space coordinates of LiDAR points based on flying 
time, flying speed, simulated navigation solution, laser repetition rate, scan rate, scan angle 
and boresight parameters with the assumed error levels. In addition, the ground surface must 
be provided either analytically or as a DEM to serve as reference. The navigation solution is 
similarly defined by the sensor trajectory and orientation. The errors are independently 
introduced in the range and scan angle measurements, object coordinates of trajectory, and 
boresight angles and offsets. 

3.2. Reference Surface 

To support testing, two reference surfaces were created: (1) a conventional DEM, and (2) 
simulated LiDAR surface, based on the DEM surface that was used for calculating 
coordinates of LiDAR points. For the DEM reference surface, a simulated urban area, 
including modestly undulated terrain, with well distributed buildings of varying sizes, was 
created, as shown in Figure 3.  

 

Figure 3 - Simulated urban area as a DEM surface.  
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The LiDAR reference surface was generated based on the reference DEM, reference trajectory 
definition, boresight parameters, and LiDAR sensor parameters. In general, typical parameter 
settings as well as error terms were used; the laser repetition rate was set to 70 kHz and the 
platform speed was fixed at 220 km/h. During the ICP processing, only the small parts, 
subsets, of the reference surface were used, where the size of the search space was determined 
from the assumed errors in position and attitude due to the drifting navigation solution. 

3.3. LiDAR Surface 

The LiDAR surface that represents the newly acquired LiDAR data was generated by the 
LiDAR simulator. This surface is assumed to be distorted at various levels due to the varying 
duration of GPS loss of lock. The other parameters, such as laser parameters, errors bounds, 
and boresight parameters, were the same as those used for the creation of the LiDAR 
reference surface. Various sub-strips were selected from the LiDAR surface data, representing 
different object areas and different navigation solution errors, which resulted in varying 
rotational and positional offsets of the sub-strip with respect to the reference LiDAR surfaces. 
Figure 4 shows an example of the search space, a distorted sub-strip, and an undistorted sub-
strip for a one-second LiDAR data acquisition time. 

 

Figure 4 - Comparison of search space, distorted sub-strip, and undistorted sub-strip. 

The size of a sub-strip used for surface matching is determined by balancing the impact of two 
phenomena on the ICP-based matching. First, the longer the sub-strip is in the along-track 
direction, the more robust is the surface matching solution. Matching square areas is likely to 
produce a quality solution in all direction, while an elongated rectangle could result in poor 
along-track registration between the two surfaces; for example, small angle errors in surface 
matching can produce significant trajectory displacements especially in along-track direction, 
as shown in Figure 5. The larger size of the sub-strip, however, means longer acquisition time, 
which results in the increased strip deformation. Therefore, generally, the sub-strip size 
should be as big as possible, but only to the point where surface deformation can still be 
ignored. 
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Figure 5 - Large displacements in trajectory due to small angular error in surface matching. 

3.4. Results 

The results obtained by using the ICP algorithm were based a rigid-body model, so three 
rotation angles and three translations are modeled the transformation between the distorted 
sub-strip and search space. The sensor platform trajectory was recovered by applying these 
transformation parameters to the distorted navigation solution. The sub-strip matching 
accuracy (i.e., the performance of the ICP method) was calculated from the differences 
between coordinates of the transformed sub-strip (based on the ICP matching results) and 
reference surface (undistorted sub-strip). The trajectory reconstruction accuracy was 
calculated in a similar way. Both the surface matching accuracies of sub-strips and the 
corresponding accuracies of the reconstructed trajectories for different data acquisition times 
are listed in Table 1. 
 

Sub-strip [m] Trajectory [m] Acquisition 
time 

(sec) 

Number of 
points Along-

track 
Across-
track 

Height 
Along-
track 

Across-
track 

Height 

1 70k ±0.18 ±0.26 ±0.05 ±1.39 ±0.05 ±0.42 

2 140k ±0.29 ±0.24 ±0.01 ±1.35 ±1.08 ±0.42 

3 210k ±0.13 ±0.22 ±0.04 ±0.50 ±0.93 ±0.45 

4 280k ±0.06 ±0.21 ±0.01 ±0.38 ±0.76 ±0.45 

Table 1- Surface matching and trajectory reconstruction precisions (standard deviation). 

The test results show that surface matching can provide an acceptable navigation solution 
under no GPS conditions using a typical urban environment. The standard deviations of the 
reconstructed trajectory are less than ±1m in all direction for more than two-second LiDAR 
data acquisition times (accuracy of along-track direction improves by increasing LiDAR sub-
strip acquisition time). Surprisingly, the standard deviations of across-track direction are 
larger than that of along-track direction for both sub-strips and trajectories for acquisition 
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times longer than 2 sec. This can be explained by different occlusions of the buildings and 
less adequate distribution of the surface points in the larger scan angle areas (i.e., at the swath 
boundaries). Figure 6 shows the search space and the matching result of a distorted sub-strip 
and an undistorted sub-strip for one second acquisition time. 

 

Figure 6 - Comparison of search space, matching result, and undistorted sub-strip  

4. CONCLUSIONS 

This paper describes the initial results of applying ICP-based surface matching technique to 
implement a terrain-referenced navigation support for the navigation of airborne platforms 
during GPS gaps. The imaging sensor used to implement the TRN method is an airborne 
LiDAR system, which can typically acquire a surface at few points per m2 density with 
decimeter level accuracy, provided a good navigation solution is available. If GPS signal is 
lost for some time during a LiDAR strip acquisition, the navigation solution will start drifting 
and the measured LiDAR surface will become distorted. The distortion means growing 
positional and attitude offsets and a deformation of the strip, whose rate is relatively slow for 
short time periods. Therefore, if a reference area with known surface is available, then the 
disoriented and slightly deformed LiDAR surface can be matched to the reference and a 
correction transformation can be determined, which can be used as a feedback to the 
navigation solution. The reference surface could be an existing DEM or may be provided by 
an earlier LiDAR survey with good GPS availability. The surface-based correction that allows 
a direct feedback to the error calibration loop of the navigation solution and, thus, can result in 
the ultimate improvement of the georegistration solution. The ICP algorithm, offering several 
advantages over other surface matching techniques, was selected here for surface matching. 
Several data sets with different acquisition times were tested. The results show that the 
standard deviations of along-track, across-track, and height directions of trajectory are ±0.38 
m, ±0.76 m, ±0.45 m, respectively, for a four-second acquisition time, using data of a 
simulated urban area. These results are quite promising and additional testing is needed to 
better characterize the limits as well as performance potential of the technique.  
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