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SPLIT ESTIMATION OF PARAMETERS
IN FUNCTIONAL GEODETIC MODELS

Zbigniew WISNIEWSKI
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Abstract: The method of estimation presented in the papbased on the assumption that
every measurement result can be a realizationtbérebf two different, random variables
(differing from each other in expected values). @ging it, the functional model
v=y-AX is split into two competitive onew, =y-AX, and v, =y-AX,, that
concern the same vector of observayai is a common coefficient matrixy, and v, are
competitive vectors of random error¥, and X, - competitive parameter vectors,
respectively). The estimation process proposed hetmsed on the principle of crossing
(mutual) weighting of competitive random errokg,; and vy (concerning the same
observationy; ). That important rule is realized with such conwesigh functionsw, (v;)

and W, (v, ) that:  supw,(vs) = minwg(v,) and supwg(v,) = minw,(vg), where
Vsl<4, Va V|8, Vp
d, =Vz —V, . According to the above principle and referringhie M-estimation theory, the

following  optimisation - problem: min vZw, (vz) and min VEW,(V,), will be
i B

a

formulated and solved in the paper.

The proposed method is essential extensioMeadstimation class. However, its practical
application is not limited to a robust estimatioh tbe parameteiX (Xaestimator) and

extended with estimatoX s (concerning outliers). The presented method can beaplslied
to a joint adjustment of two observation sets measurédan different epochs. Differences
between competitive estimates, and X, can indicate displacements of network points.

The paper presents some basic, numerical exampleslitisaitate principles of the split
estimation in functional geodetic models.
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1. Introduction

In estimation theories, it is usually assumed that measnt results are a set of realizations
of one random variablé with the expected valug&(g) = AX (AOO™ - known coefficient
matrix, X 00" *- parameter vector). Then, the following functiomabdel v. = y. -ay X,

i —1K ,n, can be formulated for every observatign(v; - random errora; - ith row of the
matrix A). In geodetic practice, it is sometimes possiliiat tmeasurement results are
realizations of either o€, or &, different, random variables differing from eactnet in
expected valuesE(g,) =AX, and E(§;) =AX,. For example, it can occur that an
observation set contains some outliers. Then, @meassume that “good” observations are
realizations of the variablg, and outliers, the other ong,. The essential problem is how

to identify a particular measurement result witthei of random variables objectively.
RobustM-estimation solves the problem by applying spegidéisigned attenuation functions.
Such functions decrease weighs of observations;hwéaie supposed to be realizations of the
variable g, (such suspicion is based on values of residuglge.g. Huber 1981, Hampel et.
al. 1986, Yang 1994, Yang et al 2002;). In thatecastimation results depend on arbitrarily
assumed attenuation functions or more generallyassumed weigh functions (various
examples of attenuation or weigh functions aregmresd in e. g. Hampel et. al. 1986; Koch
1996, 1999; Gui, Zhang 1998; Caspary, Hean 199@niMivski 1999). Similarly, results of
geodetic network measurements obtained in two reifieepochs can be an example of a set
that consists of realizations of two random vaeabtliffering from each other in expected
values. Up to now, in the classical estimation rod# results obtained in the first epoch are
arbitrarily taken as realizations of the first adnie &, , and in the second one as realizations

of the otherg ;. Thus, it is necessary to assume two coexistingtfonal models: for one part
of the observation sev,; =y, -a,;,X,, i =1K,n, and for the otherv, =y, —a;X,,
i =1K ,nz, where X, and X, are two states of network point coordinates. Ntet,us

assume that some network points are not displacéden, some observations described
classically with the model; =y, —a;, X ;, can be interpreted as realizations of the vagiabl

&, and can support estimation of the parameéter

Let us consider the above examples or other simitamtion when a set of measurement
results may be a realization of either of two randeariables. It is assumed here that to
identify observations objectively, which is equigal with objective estimation of parameters
X, and X, the random variables should rival each othemédians that, two functional

models as well as two competitive random errarsand v, should exist for each
observationy,. The concept described here is explained withfélewing elemental and
rather "idealistic” example.

Let y= 1236,8 be measurement results of some quanXityvith the modelv; = y; - X .
One can as;sumeA(Oc = 20 as the estimator that accepts realizations ofradhdom variable
¢, =123 (in the robust estimatiod, would be a “good” variable) and ignores realizasio
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of the variable, = 6,8 (in the robust estimation — “strange” variableheTfollowing
residuals:v,, =-1, v, =0, V, 5 =1, V,, =4, V,5 =6 respond to that estimator. Another
possible and competitive solution is an estimﬁl;)e= 7. This time one assumes th@t is the
“strange” variable. Thus, another version of realdican be obtainedi,;, =-6, V,, =-5,
\7,8,3 = _4, \7ﬂ’4 = _1, \7ﬂ’5 :1.

If two competitive assumptions about identifyingaserement results with either of random
variables is considered then the classical funatiomodel of geodetic observations must be
split. This paper proposes the way how to estinpae@meters of such, split models. The
optimisation problem formulated here refers toghaciples of M-estimation but it is also an
important extension of this estimation class. Theppsed method is illustrated with two
numerical examples: The first one concerns the rebten set presented earlier (with the
solutions indicated) and the second one referstimation of coordinates of geodetic points

in a network with a “mixed” set of measurement Hss(measurement results obtained in two
epochs).

2. Assumptions

2.1. Split functional model
The following optimisation problem:

”Lin o(X) = ép(vi) , Vi =y, ‘a(i))z 1)

is the basis for many estimation methods that lgetortheM-estimation class; wherg(v;) ,
i =1K ,n, are some symmetric, convex, arbitrarily assunuedtions (Huber 1981; Hampel

et. al. 1986; Krarup, Kubik 1983; Huang , Martid95; Koch 1996; Zhu 1996; Xu 1989;
Yang 1994; Yang et. al. 2002). In the least squarethod, which is a neutri®l-estimation, it
is assumed that

p(vi) = Vi p (2)
where p, is the weight ofth observation assigned, within the functipfv;), to the random
error v, . According to the robus¥l-estimation, the weightgp, are replaced with equivalent
weights ()i, which values are equal to values of concave asigconcave weight functions
w(v;) whereat D|vi| Z0: w(v;)<w(). The above properties of weight functions

correspond to the assumption that fileestimator should be function of realizations of
“good” variableg, only. Outliers, realizations of “strange” variatde, should be rejected.

The concept of equivalent weights follows the agstions that variable§, and &, share
one expected valug(g,) = E(§ ;) = E(€) = AX and differ from each other much in standard
deviationss . Values of the standard deviatiet) (variable&,) are reasonable and depend on
measurement accuracy, technique etc. In contradties of the standard deviation,
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(“strange” variable ;) are assumed as adequately bigger thamence not to influence the
M-estimator computation.

In practice, weight functions, which follow the capt described above, are not so restrictive
(influence of realizations identified as outliers feliminated” softly). It is because
observation residuals are known only (real erréag snknown) and sets of realizatiofis

and ¢, can share some intersections. Huber’s functioa good example of such practical
weight function (Huber 1986)

P for |vi|<c
B)i = W(Vi) = i for |Vi| >c (3)
vi

where p, =1/¢? are original weights while equivalent weighb; =c/|vi| approach some
small value referred to standard deviatiopn (usuallyc =20, ).

One can notice that values ef; should be at an adequately high level. It is begafsthe
assumption concerning expected valiigg) of the random variable$, and¢j.

This paper proposes more natural concept that ecespected valud(s,) different from
E(¢) = E(¢, ) and that makes standard deviatiep reasonable, too. Such assumptions lead
to the split of the random variable realizationsn@erning¢, and¢,, respectively) and to
other following consequences, described later on..

Thus, if a set of random variable realizationspht snto two competitive ones, which are
identified with variables &, and $po then two competitive, functional models
Vi =Y —apX,and vy =y —ap X, (Where E(y) =a;X, and E(y) =a;X,) are
assigned to every observatiopp. The split of the functional model that concernsole
observation set can be written as follows:

v, =y-AX,

split(v=y -AX) = { (4)

2.2. Weight functions and tar get function components.

Estimation of competitive parametexs, and X , by using the same vector of observatigns

requires specially formulated target function af tptimisation problem. This paper proposes
to replace functionp(v) with functions p,(v,) and p,(vs), according to the model

in Eqg. (4) and in compliance with the principleanbssing, mutual weighting of competitive
residualsv, andv,. That cross-weighting is guaranteed when the ldignctionsw, (v, )

and w, (v,) are obtained as
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9. (v, _dp,(v,)
W, (v,) = g(v(z)), Wy 00) = 5)

The functionsp, and p,, as well as the weight functions, should also dhe following
properties (considering the optimisation target):

minp, (v,) = supw,(v,),
V,

minW(x (V/j’) < Sup pa(v(x)
o [V, |<dy Vp [V, |6y
. : (6)
minp,(V;) = supwg(v,), minw, (v,) = sup pg(vy)
Vg ‘vﬂ‘sé\, Va |V, | <0y

whered, =V, —V,. The following functions of standardized randomoes v, , v,

0
palV) = V2V )= =
(7)
9 (V)
py(Vp) = VEVE, w, (V) :#{; =V,

own mentioned properties in natural way (Fig. 1).

— 2
W/)’ (Va) - Vu

1<

: _2
W (vp) =V

Fig. 1- lllustration to cross-weighting
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3. Optimisation Problem and Solution

The following optimisation problem is formulated ¢time basis of the model Eg. (4) and
functions from Eq. (7):

v, =y-AX,

> ®)

ming(X,) = p(X,)

n):in(/’(xﬂ):ﬂxﬂ) /
B

where
¢(Xa) = %pa (Vai ) = évsi Woc (Vﬂi ) = Vl—wa (Vﬂ)va
) ] 9)
p(Xp) = EP/; (Vgi) = Elvéiwﬁ (Vi) = V;Wﬁ(va)vﬁ
and

w,(V,)= Diag(VELVEz,/\ ,V/Z;n )

W, (v,) = Diag(v Vi A vg)

ai?
The competitive estimatoria and )A(/; are solutions of the problem Eg. (8) when gradient

g, and g, are zero vectors, i.e.,, when the following equatgystem is fulfilled (for

v, =V, =y-AX, andv, =V, :y—A)A(ﬁ):

ol (X,.X,) = 2% 2oy (v )A=0

do(X (20)
g;(xavxﬁ): ¢( ﬂ):ZV};W(Va)AZO

ox,

Because for the functiong(X ) and (X ;) the following Hessians exist:
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0%p(X,) _ZavT
ol =

H,(X,)= axa W, (V,)A =2ATw, (v,)A

0%p(X ) _Zav;
2 Tox,

(11)

H,(X,)= W (V,)A =2ATw, (v, )A

B

then Newton’s method can be applied to compf(u;eand 5(5 (e.g Teunissen 1990). Let us

consider necessary conditions Eq. (10) (gradieretsederred to each other by shared variable
X, andX,), the iterative formula can be written as{1K ,k)

Xa =X+ X, X} =H X ™Mg, (XX

a

o - el v (12)
XL =Xt +dx T, dX ) =H M (X))g, (X1, X ™)

The iterative process Eq. (12) is ended for suchk, where ga(XZ‘l,X;‘l):O and
g,(X¥,x5M) =0. Thus X, =XX X, =x% and 0, =y-AX,, ¥,=y-AX,. The
estimates of the least squares method, =(ATA) ATy and ¥, =y -AX,s can be a
starting point for such iterative process.

4. Examples

A. Let, as it was in the first part of the papgf, = [1, 2,3 6,8] be a vector of measurements
of some quantityX and let v=y-AX be the classical, functional model, where

AT = [1L1,2,141]. Then the LS estimates are as follows: )ZLS =4 and
Vis =[-3-2-124]. Let now the optimisation problem Eq.(8) with gpliunctional
model v, =y-AX,, v, =y-AX, be considered. Then the following competitive

estimator can be obtained (mostly in compliancéd Vintuitional” values from the first part
of the paper):

X, =187, VT =[-087,013,113 413,613

~

X, = 719, ¥}, =[-619, - 519, - 419, - 119,081

The main results of the iterative estimation precEg. (12), which lead to the final results
presented above are listed in tablePloDiag(P) is the weight matrix in theS method and

w = Diag(w))
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y Vis |V} vi V5 vZ Vy=v5 |V, =V
1.00 |-3.00 |[-4.06 -1.03 -6.18 -0.87 -6.19 -0.87
2.00 |-2.00 |[-3.06 -0.03 -5.18 0.13 |-519 0.13
3.00 |-1.00 |[-2.06 097 |-4.18 1.13 [-4.19 113
6.00 | 2.00 0.94 3.97 |-1.18 413 [-1.19 4.13
8.00 | 4.00 | 2.94 597 | 082 | 6.13 | 081 6.13
v 1 1 2 2 vy —vyw3|vw -— 3
4.00 5.06 2.03 7.18 1871 7.19 1.87
P Wﬂ(OLS) Wa(vjb) Wﬂ(vi) Wa(vﬁ’) Wﬂ(vi) Wa(vi)
1 9 16.5 11 38.2 0.7 38.3
1 4 9.4 0.0 26.8 0.2 26.9
1 1 4.2 0.9 17.4 13 175
1 4 0.9 15.8 14 17.0 1.4
1 16 8.6 35.6 0.7 37.6 0.7

Table 1 - Iterative process results

B. Consider a levelling network with one unknownmpofour fixed points and four height
differences measured in two epochs. Measuremeultsesere simulated under assumption

that J, = H, -H, =0.100 is a theoretical difference of the unknown poieights in two

measurement epochs and . Figure 2 presents the network sketch togetheh whe
simulated results of measurements.
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] ]
y h,; =1.002 ¥ h/fl =1.096
h,, =0.997 h,, =1.003 hy, =1.104 hy, =1.101
3 > < O 0 < {1
A h,;=0998 A hﬂ3 =1.099
] ]

Fig. 2 - Levelling network sketch

According to the principles of the proposed meththdhe observations can be written as one
vector of measurement results (the observationraloles not matter)

y' =[h,, hpr Pias Ngas Nugy Ngs, Mgy Nl =
=[1.002 1.096 1.003 1101 0.998 1.099 0.997, 1104

and two competitive, functional models can be fdated

v,=y—-AH,_, vy =y-AH,

where AT =[1, 1,,A 15]. Thus, the optimisation problem Eq. (8) can beeslin six steps
iterative process Eq (12) , and results in

A

H, =1.000, U] =[0.002,0.096,0.003,0.101, - 0.002,0.099 - 0.003, 0.104

H, =1.100, \7; =[-0.098 - 0.004 - 0.097,0.009 - 0.102 - 0.001 - 0.103, 0.004

It should be emphasised thétﬁ -H, =45, and alsoli : ¥, —Vy =0y

5. Conclusions

The method proposed here is an extensiokl-@stimation class where measurement results
can be realizations of either of two different, quatitive, random variables.. The algorithm
presented in Eq. (12) can be applied to the robstéiation of the parameters (example A) as
well as to estimation of geodetic points displacetmaéexample B).

The cross-weighting principle, concerning the cotitipe residuals of the same observation,
is theoretical foundation of the proposed estinmtioethod. This paper assumed that the
weight functions are convex, squared ones. Howether solutions are also possible if only
other assumed weight function fulfil required thegaral conditions Eg. (6).
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The solution of the optimisation problem Eq. (8ppwsed here refers to Newton’s method.
Such algorithm is especially effective with theuased weight functions (the examples show
that satisfactory results can be obtained afteriferative steps).
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