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Abstract: The method of estimation presented in the paper is based on the assumption that 
every measurement result can be a realization of either of two different, random variables 
(differing from each other in expected values). Supposing it, the  functional model 

AXyv −=  is split into two competitive ones αα AXyv −=  and ββ AXyv −= , that 

concern the same vector of observation y (A is a common coefficient matrix, αv  and βv  are 

competitive vectors of random errors, αX  and βX  - competitive parameter vectors, 

respectively). The estimation process proposed here is based on the principle of crossing 
(mutual) weighting of competitive random errors ivα  and ivβ  (concerning the same 

observation iy ). That important rule is realized with such convex weigh functions )( βα vw  

and )( αβ vw  that:  )(min)(sup αββα
δ αβ

vwvw
vv v

⇔
≤

 and  )(min)(sup βεαβ
δ βα

vwvw
vv v

⇔
≤

, where 

αβδ vvv −= . According to the above principle and referring to the M-estimation theory, the 

following optimisation problem: ∑
i

ii vwv )(min 2
βαα

αX
 and ∑

i
ii vwv )(min 2

αββ
βX

, will be 

formulated and solved in the paper.  

The proposed method is essential extension of M-estimation class. However, its practical 

application is not limited to a robust estimation of the parameter X ( αX̂ estimator) and 

extended with estimator βX̂  (concerning outliers).  The presented method can be also applied 

to a joint adjustment of two observation sets measured in two, different epochs. Differences 

between competitive estimates αX̂  and  βX̂  can indicate displacements of network points. 

The paper presents some basic, numerical examples that illustrate principles of the split 
estimation in functional geodetic models. 
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1. Introduction  

In estimation theories, it is usually assumed  that measurement results are a set of  realizations 

of one random variable ξ  with the expected value AXξ =)(E  ( rn,ℜ∈A  - known coefficient 

matrix, 1,rℜ∈X - parameter vector). Then, the following functional model Xa )(iii yv −= , 

ni ,,1Κ− , can be formulated for every observation iy  ( iv  - random error, )(ia - ith row of the 

matrix A). In geodetic practice, it is sometimes possible that measurement results are 
realizations of either of αξ  or βξ  different, random variables differing from each other in 

expected values αα AXξ =)(E  and ββ AXξ =)(E . For example, it can occur that an 

observation set contains some outliers. Then, one can assume that “good” observations are 
realizations of the variable αξ  and outliers, the other one, βξ . The essential problem is how 

to identify a particular measurement result with either of random variables objectively. 
Robust M-estimation solves the problem by applying specially designed attenuation functions. 
Such functions decrease weighs of observations, which are supposed to be realizations of the 
variable βξ  (such suspicion is based on values of residuals iv ) (e.g. Huber 1981, Hampel et. 

al. 1986, Yang 1994, Yang et al 2002;). In that case, estimation results depend on arbitrarily 
assumed attenuation functions or more generally on assumed weigh functions (various 
examples of attenuation or weigh functions are presented in e. g. Hampel et. al. 1986; Koch 
1996, 1999; Gui, Zhang 1998; Caspary,  Hean 1990; Wiśniewski 1999). Similarly, results of 
geodetic network measurements obtained in two different epochs can be an example of a set 
that consists of realizations of two random variables differing from each other in expected 
values. Up to now, in the classical estimation methods, results obtained in the first epoch are 
arbitrarily taken as realizations of the first variable αξ , and in the second one as realizations 

of the other βξ . Thus, it is necessary to assume two coexisting functional models: for one part 

of the observation set αα Xa )(iii yv −= , αni ,,1Κ=  and for the other ββ Xa )(iii yv −= , 

βni ,,1Κ= , where αX  and  βX  are two states of network point coordinates. Now, let us 

assume that some network points are not displaced.  Then, some observations described 
classically with the model ββ Xa )(iii yv −= , can be interpreted as realizations of the variable 

αξ  and can support estimation of the parameterαX . 

Let us consider the above examples or other similar situation when a set of measurement 
results may be a realization of either of two random variables. It is assumed here that to 
identify observations objectively, which is equivalent with objective estimation of parameters 

αX  and βX , the random variables should rival each other. It means that, two functional 

models as well as two competitive random errors ivα and ivβ  should exist for each 

observation iy . The concept described here is explained with the following elemental and 

rather ”idealistic” example. 

Let 8,6,3,2,1=y  be measurement results of some quantity X  with the model Xyv ii −= . 

One can assume 0.2ˆ =αX  as the estimator that accepts realizations of the random variable 

3,2,1=αξ  (in the robust estimation αξ  would be a “good” variable) and ignores realizations 
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of the variable 8,6=βξ  (in the robust estimation – “strange” variable). The following 

residuals: 1ˆ 1 −=αv , 0ˆ 2 =αv , 1ˆ 3, =αv , 4ˆ 4, =αv , 6ˆ 5, =αv  respond to that estimator. Another 

possible and competitive solution is an estimate 7ˆ =βX . This time one assumes that αξ  is the 

“strange” variable. Thus, another version of residuals can be obtained: 6ˆ 1, −=βv ,  5ˆ 2, −=βv , 

4ˆ 3, −=βv , 1ˆ 4, −=βv , 1ˆ 5, =βv . 

If two competitive assumptions about identifying measurement results with either of random 
variables is considered then the classical functional model of geodetic observations must be 
split. This paper proposes the way how to estimate parameters of such, split models. The 
optimisation problem formulated here refers to the principles of M-estimation but it is also an 
important extension of this estimation class. The proposed method is illustrated with two 
numerical examples: The first one concerns the observation set presented earlier (with the 
solutions indicated) and the second one refers to estimation of coordinates of geodetic points 
in a network with a “mixed” set of measurement results (measurement results obtained in two 
epochs). 

2. Assumptions 

2.1. Split functional model 

The following optimisation problem:  

is the basis for many estimation methods that belong to the M-estimation class; where )( ivρ , 

ni ,,1Κ= , are some symmetric, convex, arbitrarily assumed functions (Huber 1981; Hampel 
et. al. 1986; Krarup, Kubik 1983; Huang , Marticas 1995; Koch 1996; Zhu 1996; Xu 1989; 
Yang 1994; Yang et. al. 2002). In the least squares method, which is a neutral M-estimation, it 
is assumed that 

where ip  is the weight of ith observation assigned, within the function )( ivρ , to the random 

error iv . According to the robust M-estimation, the weights ip  are replaced with equivalent 

weights ip
)

, which values are equal to values of concave or quasi-concave weight functions 

)( ivw  whereat )0()(:0 wvwv ii ≤≠∀ . The above properties of weight functions 

correspond to the assumption that the M-estimator should be function of realizations of 
“good” variable αξ only. Outliers, realizations of “strange” variable βξ , should be rejected.  

The concept of equivalent weights follows the assumptions that variables αξ and βξ   share 

one expected value AXξξξ === )()()( EEE βα  and differ from each other much in standard 

deviations σ . Values of the standard deviation ασ  (variable αξ ) are reasonable and depend on 

measurement accuracy, technique etc. In contrast, values of the standard deviation βσ  

 
                       ∑

=
=
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i
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X
,               Xa ˆˆ )(iii yv −=    (1) 
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(“strange” variable βξ ) are assumed as adequately bigger than ασ  hence not to influence the 

M-estimator computation.    

In practice, weight functions, which follow the concept described above, are not so restrictive 
(influence of realizations identified as outliers is “eliminated” softly). It is because 
observation residuals are known only (real errors stay unknown) and sets of realizations αξ  

and βξ  can share some intersections. Huber’s function is a good example of such practical 

weight function (Huber 1986) 

 





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

>

≤
==
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cvforp

vwp
i

i

ii

ii )(
)

 (3) 

where 2/1 ασ=ip  are original weights while equivalent weights ii vcp /=)
 approach some 

small value referred to standard deviation βσ  (usually ασ2=c ). 

One can notice that values of βσ should be at an adequately high level. It is because of the 

assumption concerning expected values )(ξE of the random variables αξ   and βξ .  

This paper proposes more natural concept that accepts expected value )( βξE  different from 

)()( αξξ EE = and that makes standard deviation βσ  reasonable, too. Such assumptions lead 

to the split of the random variable realizations (concerning αξ   and βξ , respectively) and to 

other following consequences, described later on..  

Thus, if a set of random variable realizations is split into two competitive ones, which are 
identified with variables αξ  and βξ , then two competitive, functional models 

αα Xa )(iii yv −= and ββ Xa )(iii yv −=  (where αXa )()( iiyE =  and βXa )()( iiyE = ) are 

assigned to every observation iy . The split of the functional model that concerns whole 

observation set can be written as follows: 

 





−=
−=

=−=
ββ

αα

AXyv

AXyv
AXyv )(split  (4) 

  

2.2. Weight functions and target function components. 

Estimation of competitive parameters αX and βX  by using the same vector of observations y, 

requires specially formulated target function of the optimisation problem. This paper proposes 
to replace function )(vρ  with functions )( ααρ v  and )( ββρ v , according to the model  

in  Eq. (4) and in compliance with the principle of crossing, mutual weighting of competitive 
residuals αv  and βv .  That cross-weighting is guaranteed when the weight functions )( βα vw  

and )( αβ vw  are obtained as  
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The functions αρ  and βρ , as well as the weight functions, should also own the following 

properties (considering the optimisation target): 

 )(sup)(min βα
δ

αα

αα

ρ vwv
vvv ≤

⇔ ,             )(sup)(min αα
δ

βα ρ
αβ

vvw
vvv ≤

⇔  

)(sup)(min αβ
δ

ββ

β
β

ρ vwv
vvv ≤

⇔ ,           )(sup)(min ββ
δ

αβ ρ
αα

vvw
vvv ≤

⇔  
(6) 

where αβδ vvv −= . The following functions of standardized random errors αv , βv : 

 22)( βαααρ vvv = ,                 2
2)(

)(
)( β

α

αα
βα

ρ
v

v

v
vw =

∂
∂

=  

22)( αβββρ vvv = ,                   2
2 )(

)(
)( α

β

ββ

βα

ρ
v

v

v
vw =

∂

∂
=  

(7) 

own mentioned properties in natural way (Fig. 1). 

                                         

                                     

αv

βv

2)( ββα vvw =

2)( ααβ vvw =

αv̂

βv̂

vδ  

 

Fig. 1- Illustration to cross-weighting 
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3. Optimisation Problem and Solution 

The following optimisation problem is formulated on the basis of the model  Eq. (4) and 
functions from Eq. (7): 

  

αα AXyv −=        

 ββ AXyv −=  

                                                   )ˆ()(min αα φφ
α

XX
X

=    

                                                   )ˆ()(min ββ φφ
β

XX
X

=  

(8) 

where 

 
∑ ∑
= =

===
n

i

n

i

T
iii vwvv

1 1

2 )()()()( αβααβααααα ρφ vvwvX  

∑ ∑
= =

===
n

i

n

i

T
iii vwvv

1 1

2 )()()()( βαββαβββββ ρφ vvwvX  

(9) 

and 

                ),,,()( 22
2

2
1 nvvvDiag ββββα Λ=vw                

                ),,,()( 222
iii vvvDiag ααααβ Λ=vw  

The competitive estimators αX̂  and βX̂  are solutions of the problem Eq. (8) when gradients 

αg  and βg  are zero vectors, i.e., when the following equation system is fulfilled (for 

ααα XAyvv ˆˆ −==  and βββ XAyvv ˆˆ −== ): 

 
0Avwv

X

X
XXg ==

∂
∂

= )(2
)(

),( βαα

α

α
βαα

φ TT  

0Avwv
X

X
XXg ==

∂
∂

= )(2
)(

),( αβ

β

β

βαβ

φ TT  
(10) 

  

Because for the functions )( αφ X  and )( βφ X   the following Hessians exist: 
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then Newton’s method can be applied  to compute αX̂  and βX̂ (e.g Teunissen 1990). Let us 

consider necessary conditions Eq. (10) (gradients are referred to each other by shared variable 

αX  and βX ), the iterative formula can be written as ( kj ,,1Κ= ) 

    11 −− += jjj d ααα XXX ,                         ),()( 1111 −−−−= jjjjd βααβαα XXgXHX  

11 −− += jjj d βββ XXX ,                         ),()( 11 −−= jjjjd βαβαββ XXgXHX  
(12) 

The iterative process Eq. (12) is ended for such kj = , where 0XXg =−− ),( 11 kk
βαα  and 

0XXg =− ),( 1kk
βαβ . Thus k

αα XX =ˆ  , k
ββ XX =ˆ  and αα XAyv ˆˆ −= , ββ XAyv ˆˆ −= . The 

estimates of the least squares method yΑAAX TT
LS

1)(ˆ −=  and LSLS XAyv ˆˆ −=  can be a 

starting point for such iterative process. 

 

4. Examples 

A. Let, as it was in the first part of the paper, ]8,6,3,2,1[=Ty  be a vector of measurements 
of some quantity X and let XAyv −=  be the classical, functional model, where 

]1,1,1,1,1[=TA . Then the LS estimates are as follows: 4ˆ =LSX  and 

]4,2,1,2,3[ˆ −−−=T
LSv . Let now the optimisation problem Eq.(8) with split, functional 

model αα XAyv −= , ββ XAyv −=  be considered. Then the following competitive 

estimator can be obtained (mostly in compliance with “intuitional” values from the first part 
of the paper): 

                                   87.1ˆ =αX ,                   ]13.6,13.4,13.1,13.0,87.0[ˆ −=T
αv  

                                   19.7ˆ =βX ,                    ]81.0,19.1,19.4,19.5,19.6[ˆ −−−−=T
βv  

The main results of the iterative estimation process Eq. (12), which lead to the final results  
presented above are listed in table 1 ( )(PP Diag=  is the weight matrix in the LS method and 

)(ww Diag= )       
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y LSv̂  1
βv  1

αv  2
βv  2

αv  =βv̂ 3
βv  =αv̂ 3

αv  

1.00 

2.00 

3.00 

6.00 

8.00 

-3.00 

-2.00 

-1.00 

  2.00 

  4.00 

-4.06 

-3.06 

-2.06 

  0.94 

  2.94 

-1.03 

-0.03 

  0.97 

  3.97 

  5.97 

-6.18 

-5.18 

-4.18 

-1.18 

  0.82 

-0.87 

  0.13 

  1.13 

  4.13 

  6.13 

-6.19 

-5.19 

-4.19 

-1.19 

  0.81 

-0.87 

  0.13 

  1.13 

  4.13 

  6.13 

 

LSX̂  1
βX  1

αX  2
βX  2

αX  =βX̂ 3
βX  =αX̂ 3

αX  

4.00 5.06 2.03 7.18 1.87 7.19 1.87 

P )ˆ( LSvw β  )( 1
βα vw  )( 1

αβ vw  )( 2
βα vw  )( 2

αβ vw  )( 3
βα vw  

1 

1 

1 

1 

1 

9 

4 

1 

4 

16 

16.5 

9.4 

4.2 

0.9 

8.6 

1.1 

0.0 

0.9 

15.8 

35.6 

38.2 

26.8 

17.4 

1.4 

0.7 

0.7 

0.2 

1.3 

17.0 

37.6 

38.3 

26.9 

17.5 

1.4 

0.7 

 

                                                       Table 1 - Iterative process results  

 

B. Consider a levelling network with one unknown point, four fixed points and four height 
differences measured in two epochs. Measurement results were simulated under assumption 

that 100.0=−= αβδ HHt
H  is a theoretical difference of the unknown point heights in two 

measurement epochs α  and β . Figure 2 presents the network sketch together with the 
simulated results of measurements.  
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002.11 =αh

003.12 =αh

998.03 =αh

997.04 =αh

096.11 =βh

101.12 =βh

099.13 =βh

104.14 =βh

100.0=t
Hδ

 

Fig. 2 - Levelling network sketch 

According to the principles of the proposed method all the observations can be written as one 
vector of measurement results (the observation order does not matter)                                       

                       
]104.1,997.0,099.1,998.0,101.1,003.1,096.1,002.1[

],,,,,,,[ 44332211

=

== βαβαβαβα hhhhhhhhTy
 

and two competitive, functional models can be formulated 

                                                αα AHyv −= ,             ββ AHyv −=                                                         

where ]1,,1,1[ 821 Λ=TA . Thus, the optimisation problem Eq. (8) can be solved in six steps 

iterative process Eq (12) , and results in 

  000.1ˆ =αH ,              ]104.0,003.0,099.0,002.0,101.0,003.0,096.0,002.0[ˆ −−=T
αv  

  100.1ˆ =βH ,              ]004.0,103.0,001.0,102.0,009.0,097.0,004.0,098.0[ˆ −−−−−−=T
βv  

 It should be emphasised that t
HHH δαβ =− ˆˆ  and also t

Hii vvi δβα =−∀ ˆˆ: .  

5. Conclusions 

The method proposed here is an extension of M-estimation class where measurement results 
can be realizations of either of two different, competitive, random variables.. The algorithm 
presented in Eq. (12) can be applied to the robust estimation of the parameters (example A) as 
well as to estimation of geodetic points displacements (example B). 

The cross-weighting principle, concerning the competitive residuals of the same observation,  
is theoretical foundation of the proposed estimation method.  This paper assumed that the 
weight functions are convex, squared ones. However, other solutions are also possible if only 
other assumed weight function fulfil required theoretical conditions Eq. (6). 
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The solution of the optimisation problem Eq. (8) proposed here refers to Newton’s method. 
Such algorithm is especially effective with the assumed weight functions (the examples show 
that satisfactory results can be obtained after few iterative steps).  
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