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Abstract: A large deformation monitoring network has been observed in three epochs. 
Heterogeneous data were collected on two unstable slopes near a cooling water pond for a 
power generation plant. These heterogeneous data consist of horizontal directions, horizontal 
distances and trigonometric height differences derived from total station observations and 
azimuths, distances and ellipsoidal height differences derived from DGPS observations. A 
separate network adjustment is performed for each epoch to integrate the heterogeneous data 
and obtain coordinates of all stations in a local level frame. Then, a Multi-Parameter 
Transformation is applied to compare coordinates between epochs. In the MPT method, a 
three-dimensional similarity transformation (three rotations, three translations, and a scale 
factor) is used to relate observations or derived observations (e.g. coordinates) from different 
measurement epochs. A global best fit will yield three-dimensional differences of all stations 
between measurement epochs. Statistical verification of these differences allows to 
distinguish between apparent movements due to random observation errors and actual 
deformations.  Furthermore, a priori knowledge of the unknown transformation parameters 
can be utilized to strengthen the solution. Results from this application indicate that a  Multi-
Parameter Transformation is a very effective method for deformation monitoring, especially 
when a large number of the monitored points show significant deformations. 

1. INTRODUCTION 

A large deformation monitoring network has been observed in three epochs between 2005 and 
2007. The network is spread out over two unstable slopes (North Hill and Rom Hill) near a 
cooling water pond for a large coal-fired electric power generation plant. There are no stable 
control stations in the area, all network points are potentially subject to deformations. 
Heterogeneous data derived from Total Station and GPS measurements are available for all 
three epochs.  
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The goal is to determine significant movements of the two hill sides over time from the given 
observations. Section 2 introduces the monitoring network and describes the measurements 
carried out and their accuracies.  

In the first step of the analysis, a separate network adjustment is performed for each epoch to 
integrate the heterogeneous data and obtain local coordinates of all points. This is described in 
section 3. 

In the second step, a Multi-Parameter Transformation is applied to compare coordinates 
between epochs and obtain misclosure vectors for all points. These misclosure vectors are 
then statistically verified to distinguish between apparent movements due to random 
measurement errors and actual deformations of the target points. This deformation analysis is 
described in section 4. 

Section 5 presents results obtained from the analysis described previously, which are 
deformations of the two hill sides between the 2005 and 2006 measurement campaign as well 
as between the 2005 and 2007 epochs. A discussion of these results follows. 

Lastly, section 6 summarizes this paper and offers conclusions derived from the results 
obtained in the analysis. 

2. NETWORK AND OBSERVATIONS  

The monitoring network consists of 55 points in total, although not all points were observed 
in each epoch. The points are located on two separate hill sides (North Hill and Rom Hill) 
near a water reservoir for a power generation plant. North Hill (Figure 1a) is facing the 
reservoir on the North side. Rom Hill (Figure 1b) is located just south of the plant itself. 
Figure 2 gives an overview of the point locations. Points 11 to 29 and 110 to 114, marked in 
blue, are on North Hill. Points 31 to 39 and 311 to 319, marked in brown, are located on Rom 
Hill. Points 41 to 48 (green) are piezometer locations on North Hill. Points 400 to 406 (gray) 
are temporary points. Points 402 and 405 are located in the valley between the two hill sides. 

 

  
Figure 1a - North Hill Figure 1b - Rom Hill 



 
 
 

 3 

-3200 -3000 -2800 -2600 -2400 -2200 -2000

-2800

-2600

-2400

-2200

-2000

-1800  11
 12

 13

 14

 15

 16

 17

 18
 19

 21

 22

 23

 24

 25

 26
 27

 28

 29

 31 32

 34

 35

 36

 37

 38

 39

 41

 42

 43

 44

 45

 46

 47

 48
110

111

112

113
114

311

312
313

314
315

316 317

318
319

400

401

402

403

404

405

406

N in [m]

E in [m]  

Figure 2 - Location of Target Points 

 
Accuracies for Total Station measurements are given with 5 arc seconds for horizontal 
directions and zenith angles and 5mm for slope distances. On the GPS side, the accuracy for 
the pseudo-observation vectors are 5mm for Northing and Easting components and 15mm for 
heights. All observations are assumed to be uncorrelated. By applying the law of propagation 
of errors, accuracies for the observations described above can be estimated. 

3. INTEGRATION OF HOMOGENEOUS DATA 

When integrating GPS-derived and terrestrial observations a number of things have to be 
considered. First of all, terrestrial distances are given with respect to the local horizontal plane 
of the instrument station and not with respect to the mapping surface of the GPS observations. 
Therefore, a scale factor has to be introduced to map horizontal distances from Total Station 
measurements to the reference surface specified by GPS. 

Another fact that has to be considered is the difference between orthometric heights as 
obtained from terrestrial observations and ellipsoidal heights from GPS. The difference 
between the two at a certain point is the geoid undulation N, (Seeber, 2003). Since in this case 
only height differences between points are available, only the change in geoid undulation ∆N 
between points is of interest. The power generation plant where  the observations were 
collected is located in the prairies on relatively flat terrain. Also is the area under 
consideration comparatively small (about 1.5 km²). For these reasons, the geoid undulation 
can be assumed to be constant. Conclusively, changes in geoid undulation across the area will 
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be zero and terrestrial and ellipsoidal height differences can be considered equal within the 
given accuracy of the observations. 

The first step of the analysis consists of a separate network adjustment of each epoch. This is 
done to integrate the different kinds of observations available and thus obtain “homogeneous” 
coordinates for all points in a uniform coordinate system. Their standard deviations can also 
be estimated, which are crucial for the subsequent deformation analysis. Furthermore, the 
network adjustment allows to detect and eliminate outliers in the observations and to gain an 
insight in the reliability of the data. 

Another important aspect is the definition of the geodetic datum of the network. Since this is a 
3D network, there are seven datum parameters to be determined: three translations along the 
coordinate axes, three rotations about the coordinate axes and a scale factor. 

However, some of these parameters are already defined by the observations themselves. The 
scale factor is given by the distances on the mapping surface derived from GPS data. 
Rotations around the two horizontal axes are fixed since observations have been carried out 
with respect to a local horizontal plane. The rotation about the vertical axis is defined by the 
azimuth observations available from GPS. Thus, only three free parameters remain, the three 
translations along the coordinate axes. 

There are a number of ways to overcome this datum defect. However, since this is a 
deformation monitoring network, it is important that the inner geometry of the network is not 
distorted by the datum points. So an over-constrained approach should be avoided. 

Traditionally, a deformation monitoring network consists of a number of control stations 
which are located on stable ground and target points attached to the observed object. The first 
group is used to define the datum, the latter represents the movement of the monitored 
structure, (Möser et al., 2000). In the application at hands this is not the case. There are no 
control stations available that can be considered as stable. The network consists solely of 
target points that are potentially subject to deformations. 

For this reason, the employed strategy is to use all available points and apply inner constraints 
to define the geodetic datum of the network. In this approach, the coordinate changes applied 
to the estimates are minimized and the inner geometry of the network is not affected. 

Once the datum definition is clear, coordinates for all points and fully populated covariance 
matrices can be obtained by performing a parametric, non-linear least-squares adjustment. 
The observation equations are given by the relations between the observations and the 
unknown coordinates. Initial estimates for the unknown coordinates are available. 

In the case at hands, inner constraints have been applied to points common to all three 
measurement epochs (48 points), to define the three translations of the geodetic datum. Thus, 
all three epoch share the same datum. 

4. DEFORMATION ANALYSIS 

To obtain deformations from the adjusted coordinates of each epoch, a Multi-Parameter-
Transformation is applied. The 2005 epoch serves as original (reference) epoch while the data 
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from 2006 and 2007 respectively, are considered as repeated epochs. As a result, movements 
between 2005 and 2006 as well as movements between 2005 and 2007 will be derived. 

A Multi-Parameter-Transformation is essentially a seven parameter similarity transformation 
between the original and repeated epoch, (Teskey et al., 2006). It is a very flexible solution 
since it can utilize different data as input, e.g. Total Station observations (horizontal circle 
readings, vertical circle readings and slope distances) or DGPS baselines. In this application, 
the MPT method is for the first time directly applied to coordinates of a complete, large-scale 
deformation monitoring network with virtually no stable control stations available. 

The Multi-Parameter-Transformation relates observations from the original epoch OX
ϖ

 to 

those of the repeated epoch RX
ϖ

 by applying a rotation, translation and a scale factor between 
epochs, (Teskey et al., 2006). This can be expressed as: 
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(2) 

Note that a quaternion approach has been chosen in (1) to represent the rotation between 
epochs. Quaternions are essentially an expansion of complex numbers with one real part (q0) 
and three imaginary (qx, qy, qz) and can be written as ( )[ ]zyx qqqqq ,,,0=& . They represent a 

rotation in 3D space as a single rotation with the rotation angel θ around a unit vector 

( )T
zyx rrr ,,   where 

 

(3) 

The advantage of quaternions over Euler angles is that no trigonometric functions have to be 
applied to describe the rotation, which yields a bi-linear, numerically more stable normal 
equation system. 
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Furthermore, no initial estimates for the quaternion have to be computed, which is critical 
when using elementary rotations (ω, ϕ, κ) to converge to the correct solution. Any arbitrary 
values can be chosen as initial estimates for the components of the quaternion as long as the 
constraint 

12222
0 =+++= zyx qqqqq&

 
(4) 

is fulfilled. For more information on quaternions, refer to (Kuipers, 2002). 

By inserting equation (2) into equation (1), one obtains three linearly independent equations 
for each point observed in both, original and repeated epoch. The coordinates in each epoch 
are known, but the transformation parameters are not. If three or more common points were 
observed in each epoch, an overdetermined problem exists which can be solved in an implicit, 
bi-linear least-squares adjustment. 

A further advantage of a Multi-Parameter-Transformation is that it allows to incorporate a 
priori knowledge of the unknown transformation parameters in the solution. These 
information can be introduced as additional observations, which increases redundancy and is 
especially helpful if a large number of points are suspected to have moved. 

Results of the Multi-Parameter-Transformations are the adjusted transformation parameters 
and more importantly a misclosure vector for each point and its corresponding covariance 
matrix. From the latter, a strict statistical test can be performed in order to determine whether 
or not the computed misclosure is significant, i.e. if real deformations are inherent or just 
random observation errors. 

In the case at hands, the 2005 epoch serves as reference. As all three measurement epochs are 
in the same datum, the translations and rotations between epochs are zero and the scale factor 
is one. Since all points have to be considered as potentially unstable, it is important to fix 
these transformation parameters between epochs as tightly as possible, i.e. to introduce the (a 
priori known) transformation parameters as observations and assign them a high weight. 

This is done to assure the correct detection of movements. The transformation will yield a 
global best fit for all points in the two epochs. If no stable computational base is available and 
transformation parameters are determined from unstable points, these parameters will have a 
smoothing effect on the computed movements. They can be seen as some kind of average 
movement of all points and the movements obtained will merely show a deviation from that. 

5. RESULTS 

As a result from the Multi-Parameter-Transformation, 3D-movements and their standard 
deviations are available for all points. These standard deviations are then used to distinguish 
between apparent movements due to random errors in the observations and real deformations. 
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It has been found that the detectability for horizontal movements is at the 1 cm level while for 
the vertical component the detectability is about 2 cm. 

Following is a table of the movements on North Hill for the epochs 2005 / 2006 and 2005 / 
2007, respectively. Given are the movements with respect to North, East and height as well as 
the total 3D movement ∆. Points showing statistically significant deformations are 
highlighted. 

It is obvious that between 2005 and 2007 most of the points on North Hill show significant 
deformations. These movements occur mainly in the horizontal while there are, with a few 
exceptions, no vertical movements apparent. The general direction of the horizontal 
movements is south-west, i.e.  down-slope. The magnitude between 2005 and 2006 varies 
between 1 cm and 3 cm. In 2007, these movements have accumulated to up to 6 cm. The 
stable points are mainly piezometer locations. The following plot visualizes the North Hill 
movements where stable points are shown in blue while significant deformations are given in 
red.  

 

 

N E H ∆∆∆∆ N E H ∆∆∆∆
[m] [m] [m] [m] [m] [m] [m] [m]

11 -0.016 0.018 0.004 0.025 11 -0.025 -0.013 -0.014 0.032
12 0.002 -0.014 0.013 0.019 12 -0.047 -0.024 0.016 0.055
13 -0.015 -0.005 0.002 0.015 13 -0.047 -0.022 0.007 0.052
14 -0.004 -0.005 0.001 0.007 14 -0.053 -0.024 0.014 0.059
15 0.007 0.000 -0.011 0.013 15 0.006 0.000 -0.004 0.007
17 0.007 -0.010 0.014 0.018 17 -0.048 -0.004 0.027 0.055
18 -0.005 -0.002 0.011 0.012 18 -0.064 -0.006 0.021 0.068
19 -0.002 -0.017 0.016 0.024 19 -0.003 -0.001 0.029 0.030
21 -0.016 0.006 -0.001 0.017 21 -0.045 -0.018 0.015 0.051
22 -0.004 0.004 0.002 0.006 22 -0.039 -0.021 0.019 0.048
23 -0.005 0.011 0.006 0.013 23 -0.012 -0.003 0.020 0.023
24 -0.004 0.005 -0.001 0.006 24 -0.054 -0.016 0.017 0.059
25 0.005 0.001 0.000 0.005 25 -0.050 -0.028 0.011 0.059
26 0.002 0.002 0.001 0.003 26 -0.034 -0.009 0.008 0.036
28 -0.014 -0.011 0.009 0.020 28 -0.056 -0.021 0.019 0.063
41 -0.001 -0.005 -0.012 0.013 41 -0.007 -0.006 -0.016 0.018
42 -0.002 0.007 0.010 0.012 42 0.005 0.011 0.006 0.013
43 0.007 0.001 -0.005 0.009 43 -0.006 -0.002 -0.009 0.011
44 -0.011 -0.007 0.000 0.013 44 -0.049 -0.029 0.004 0.057
45 0.013 0.004 -0.012 0.018 45 0.005 -0.002 -0.004 0.006
46 0.002 0.000 -0.002 0.003 46 -0.009 -0.006 -0.006 0.012
47 -0.004 0.004 -0.002 0.006 47 0.003 0.008 -0.018 0.020
48 0.003 0.002 0.011 0.012 48 -0.006 0.001 0.000 0.006
111 0.020 0.002 0.027 0.034 111 0.017 0.008 0.044 0.047
112 0.006 -0.006 0.015 0.017 112 -0.011 -0.015 0.021 0.028
113 0.013 0.003 0.001 0.014 113 -0.004 0.001 0.013 0.014
114 0.007 -0.003 0.018 0.019 114 -0.004 0.007 0.019 0.021

Point Point

2005 to 2006 2005 to 2007

Table 1- Movements on North Hill 
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The following table shows the deformations of the points located on Rom Hill. Again, 
movements are given with respect to North, East, height as well as the total 3D-movement ∆. 
Points showing significant deformations are highlighted.  

 

N E H ∆∆∆∆ N E H ∆∆∆∆
[m] [m] [m] [m] [m] [m] [m] [m]

31 0.007 0.003 -0.056 0.056 31 0.009 0.002 -0.057 0.058
32 0.006 -0.005 -0.052 0.052 32 0.011 0.001 -0.047 0.048
34 0.003 -0.011 -0.049 0.051 34 0.006 -0.003 -0.052 0.053
35 0.011 -0.001 -0.049 0.050 35 0.013 -0.002 -0.045 0.047
36 -0.002 0.002 -0.051 0.051 36 -0.001 -0.008 -0.050 0.050
37 0.007 0.007 -0.050 0.051 37 0.019 -0.002 -0.045 0.049
38 0.001 -0.004 -0.050 0.050 38 0.005 -0.003 -0.050 0.050
311 0.008 0.003 -0.044 0.045 311 0.006 0.003 -0.049 0.049
312 0.008 0.005 -0.046 0.047 312 0.010 -0.003 -0.046 0.047
313 0.006 0.004 -0.048 0.049 313 0.007 0.000 -0.046 0.046
314 0.009 -0.001 -0.044 0.045 314 0.012 -0.004 -0.042 0.044
315 0.008 0.005 -0.045 0.046 315 0.012 0.005 -0.044 0.046
316 -0.007 0.003 -0.047 0.048 316 0.001 -0.001 -0.043 0.043
317 -0.009 0.004 -0.046 0.047 317 0.001 0.002 -0.043 0.043
318 -0.003 0.007 -0.049 0.049 318 0.005 0.002 -0.044 0.044
319 0.009 0.003 -0.043 0.044 319 0.009 0.005 -0.036 0.037

Point Point

2005 to 2006 2005 to 2007

 

Table 2- Movements on Rom Hill 

The 3D-plot below graphically shows the deformations of the Rom Hill points. 
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Figure 3 - Movements on North Hill 
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All points on Rom Hill show significant deformations. Unlike on North Hill, these 
deformations occur almost exclusively in vertical direction. These downward movements 
have magnitudes between 4.3 cm and 5.6 cm between 2005 and 2006 and remain stable since.  
This is interesting, since this significant downward movement is not accompanied by any 
horizontal component as would be expected on a moving slope. This and the fact that no 
further movements occurred after 2006 leads to the assumption that the slope itself is stable, 
but the bars constituting the points have settled by as much as 5 cm after the reference epoch 
was observed.  

6. SUMMERY AND CONCLUSION 

An industrial application for deformation monitoring has been introduced. By integrating the 
homogeneous data types available from three measurement epochs carried out between 2005 
and 2007, coordinates for all target points can be derived. A Multi-Parameter-Transformation 
is then successfully applied to the whole monitoring network. Deformations could be 
recovered although no stable computational base is available. This is only possible by fixing 
the transformation parameters between epochs. 

Results obtained for North Hill indicate a systematic, horizontal movement of about 5 cm in a 
downhill direction which is consistent with strong evidence of erosion on the hill. On Rom 
Hill a suspicious downward movement of all target points was detected between 2005 and 
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Figure 4 - Movements on Rom Hill 
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2006. This rather seems to be a movement of the target points themselves than a deformation 
of the hill. Further observation campaigns are needed to clarify this situation. 

Conclusively, a Multi-Parameter-Transformation is a very suitable method for such 
applications. It allows to use data from different sources and yields 3D misclosure vectors 
with corresponding covariance information for each point observed in original and repeated 
epoch. It also has been shown that it works very reliably with a large number of unstable 
points which can be a crucial factor in a number of industrial applications or generally in 
areas where no stable reference is available. 
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