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Abstract: The standard reference in uncertainty modellinpés“Guide to the Expression of
Uncertainty in Measurement (GUM)”. GUM groups thecarring uncertain quantities into
“Type A” and “Type B”. Uncertainties of “Type A” ar determined with the classical
statistical methods, while “Type B” is subject tiher uncertainties like experience with and
knowledge about an instrument. Both types of uadst can have random and systematic
error components. Our study focuses on a criticehmarison of Monte Carlo (MC) and
Fuzzy techniques in the propagation process ofliffierent uncertainties, especially those of
“Type B”. Whereas MC techniques treat all uncettagas having a random nature, the
Fuzzy technique distinguishes between random arstesytic errors. The random
components are modelled in a stochastic framewaml, the systematic uncertainties were
treated with Fuzzy techniques. The applied proeduiputlined showing both the theory and
a numerical example for the evaluation of uncetiénn an application for laserscanning.

1. INTRODUCTION

The “Guide to the Expression of Uncertainty in Maasnent (GUM)” is the standard
reference in uncertainty modelling in engineering anathematical science, cf. (ISO, 1995).
GUM groups the occurring uncertain quantities ifitgpe A” and “Type B”. Uncertainties of
“Type A” are determined with the classical statigtimethods, while “Type B” is subject to
other uncertainties like experience with and knalgke about an instrument. Whereas the
uncertainties of the uncertain quantities of “Typé& can be estimated based on the
measurement itself, the estimated uncertaintieh@funcertain quantities of “Type B” are
based on expert knowledge, e.g., the technical ledgye about an instrumental error source.
Both types of uncertainty can have random and syeie error components:

- A random errore arises from non predictable variations of soméuérice factors
under seemingly the same actual conditions (nonodegible effects), see, e.g.,
Bandemer (2006, pp. 63ff).

- A systematic errod is due to non controllable effects during the measent and
the preprocessing steps of the measurement, iedidise output quantity.
Although systematic errors are unknown, they biees rheasurement result in one
direction (reproducible, but unknown effects).
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GUM defines an output quantity as a function of input quantities (preprocessing steps):

y=1(z, z,..., 7)= @), (1)
with n the number of input quantities, which can be a quantity (ISO 1995, chapter 4:1.3)

“..., whose values and uncertainties are directhedrined in the current measure-
ment (original measurement).”

« “..., whose values and uncertainties are broughttimomeasurement from external
sources, like the values from a calibration foirestrument (influence factor).”

Please note that in general the input quantigemay be a measurement resyltitself. In
order to have a clear representation, only the wémee z is a measurement or an influence

factor is treated in this paper. The quantfycan be carrier of both, random and systematic

errors. GUM proposes to treat both errors (randothsystematic) in a stochastic framework
and introduces variances to describe their unceit¢ai

Let us denote the functioffi(...) from Eq. (1) as observation model and divide tifeience
quantities into three groups: additional informatisensor parameters, and model constants.
Whereas the uncertainty of the original measurengeuasually of “Type A”, the uncertainty

of the influence factors can be of “Type A” or “Te/B”. Fig. 1 shows the interaction between
the measurement, the influence factors and theredtsen model. Systematic errors of the
input quantities are meaningful by many reasons:

- The model constants are only partially represerdgdir the given situation (e. g.,
the model constants for the refraction index fetatice measurements).
The number of additional information (measurementay be too small to estimate
reliable distributions for a random treatment.
Measurement results are affected by rounding errors
Other non-random errors of the output quantity oatue to neglected correction
and reduction steps and for effects that cannohbeelled.

The paper is organized as follows: First we wilsciibe the general idea of Monte Carlo
techniques to describe measurement uncertaintigseircontext of GUM; second a Fuzzy
approach to handle these measurement uncertaisifiesoduced. Then both approaches are
applied to laserscanning and the obtained restdtcdtically compared to each other. The
paper finishes with a discussion and an outlooKudher research.
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(IN): Physical variables, like the constants in the group
refraction index in the formula of Barrel & Sears

Figure 1 - Interaction between input quantities, abservation model and the output quantities

2. UNCERTAINTY MODELLING WITH MONTE CARLO TECHNIQUES

In Monte Carlo (MC) techniques, both, the randond #ime systematic components of the
uncertainty are treated as having a random naRlease note that not the systematic
component itself is modelled as random, it is thevdedge about the systematic component
for which a probability distribution is introduc€doch, 2007).

The GUM suggested in some cases to select the lphitpaistribution function (pdf) of the
input quantities as rectangular, triangular, argbdzoidal (ISO, 1995). In these cases, it is
hard/impossible to obtain the estimate of the uag#y for the output quantity in a closed
mathematical form. An alternative to modelling girdpagating uncertainties is propagating
distributions by MC simulations of the observatmandel from Eq. (1):

Y= (2 2,..2)= f@). v

HereY represents a random output quantity @@,,...,Z, are then random inputs.

2.1. Monte Carlo Approach to Evaluate Uncertainty

The MC techniques are of great importance for uag&y evaluation. With a set of generated
samples the distribution function for the valuetiod output quantity’ in (2) will be nume-
rically approximated. MC approaches to estimateutieertainty include the following steps:

- A set of random samples, which have the sizés generated from the (pdf) for each
random input quantityZ,, Z,,...,Z,. The sampling procedure is repeatadtimes for
every input quantity.

- The output quantities will be then calculated by:
y=1(2" 2. 9)= 1), 3)
with thei=1...M generated samples ®f, we obtain an estimate of the pdf for.

- Particularly relevant estimates of any statistgpadntities can be calculated:
1) The expectation of the output quantity:
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E(y) =2 f(2") @
2) The estimate of the variance of the output quai#itikhatib, 2007):
6, = ﬁz (f (@) - ECF@N(F(2") - E(F(2)) (5)

3) The confidence intervay,,, yc =[¥, Y] of the estimate of the output quantity with
the significance level off. To compute the confidence interval by MC simwlafi
one has to order the independent sampfegrom the smallest to largest, an
approximate 100[{1- 2/ )% for the random variabl¥ is given by (Buckland,
1983):

Yeont,we =LY =Y, Y= Wl wherej=(M +1)y andk=(M +1)(1-y). (6)

2.2. Sampling from Probability Distribution Function

Any MC simulation requires random numbers. Randomlvers are generated on a computer
by means of deterministic procedures. In particulectangular distributed random numbers
are generated, which may then in turn be transfdriméo random numbers of random
variables having other distributions, for instano&p numbers of a normally distributed
random variable (Gentel, 2003).

To demonstrate the modelling of uncertainty with &€ Mimulation in section 4, the gene-
ration algorithms of random numbers from rectangut@angular and normal distribution will
be shortly described. For more details, see, Kagh (2007):

- Generation of rectangular-distributed random nunsber
1) Generatex,X,,...,%, realisations of random variables that have théareular

distribution on the unit interval [0, 1]
2) Then y=a +(a — a)lxs rectangular-distributed on the intena._, a,] . Here

a_,a, are the distribution parameter.

- Generation of triangular-distributed random numherBhe symmetric triangular
distribution with pdf is of the form:

X—a
5 fora<x<a+a

p(x|a,a)= aa_x with a= @6 +a )/z 7)
. fora_+a< x< a
a

The inverse cumulative density function (cdf) agmio is used to generate random

numbersy,, v,,...,y, from the triangular distribution, cf., e.g., (Gen@003, pp. 102):

1.) Generate the random valuefor the random variable from rectangle distribution
Y : U(0,1).

2.) Sety equal to the distribution function, that i8{x) = h.
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3.) Invert the distribution function and isolate that is: x= F*(h)
4.) Calculatex = F™*(h) from inverse CDF:

F(h _{Jh(a:a_)(a— a)+a it Jh(a- a)(a ay a< e
a-Ja-h(a-a)a-a else

- Generation of correlated normally-distributed ramdaumbersit is well known that
the multinormal distribution is fully characterizdyy its expected valug and its
variance-covariance matrix. To generate random numbers from the multinormal
distribution, the following steps have to be paried, see, e.g., (Gentle 2003, p. 197):

(8)

1.) Compute the Cholesky decomposition, thakis: R'R.

2.) Generate a realisation of an independent anaal random vectoZ ~ N (0,1).
3.) Compute the transformeti=R"Z .

4.) Compute transformed realisations accordingtqu + Z .

5.) The vectol isY ~ N(u,X)distributed.

3. AFUZZY APPROACH TO UNCERTAINTY MODELLING

In this section, a Fuzzy approach to uncertaintydefimg in the context of GUM is

introduced. Fuzzy theory (Zadeh 1965) has provemeoan appropriate solution for the
description of uncertainties. Recently, many proces have been introduced in different
engineering applications, cf., e. g., (Fersoneta002; Moéller and Beer, 2004), incl.
discussions about combined approaches in Fuzzyythiaterval mathematics and probability
theory (Ferson et al., 2002).

In the here presented approach we distinguish legtwandom and systematic errors in the
propagation process of the uncertainties of thetiguantitiesz to the output quantityy .

Whereas the random part is treated with the laprojpagation of covariances or with the MC
approach, systematic errors are propagated witeanaitivity analysis (see section 3.2). Both
types of uncertainty are modelled in a comprehensiay, using fuzzy intervals (see
section 3.1). This procedure is in full accordandth the recommendations in the GUM; the
difference is in the treatment of the systematiorsr for which no variances are introduced.

3.1. Uncertainty Modelling using Fuzzy Intervals

The random and systematic components of the uncketaare characterized with a special
case of Fuzzy theory, so calledzzy Randomneg¢bloller and Beer 2004; Viertl 1996). Each

uncertain quantityz, is exclusively modelled in terms of fuzzy intersah fuzzy interval X
is uniquely defined by its membership function(x) over the sef of real numbers with a
membership degree between 0 and 1:

Ro={(x mR)[x3i} with my:i - [0.]] (9)

The membership function of a fuzzy interval candescribed by its leftl) and right R)
reference function (see also Fig. 2):
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L(xm——x—rj for x < x,-r
G
me(X) = 1, for x,—r< x< x,+r (20)

R(%j for x> x+r ,

with x . denoting the midpointr its radius, andc, ¢ the spread parameters of the
monotonously decreasing reference functions (cofvezy intervals).

m;(x)

Figure 2 -Fuzzy interval and its -cut

Fuzzy intervals serve now as basic quantities;r th@tpoints x, are considered in the

following as random variables and their spread rless the range of the systematic errors.
The construction of the membership function is dase expert knowledge or knowledge
about an instrument. In contrast to the MC apprpdoé membership function of a fuzzy
interval cannot be interpreted in a probabilistieaming and therefore the propagation of the
systematic uncertainties has to be modified (setose3.2). In the fuzzy case, we model the
systematic component of the uncertainty itself aotl the knowledge about the systematic

component like it is in the MC approach. The-cut with a 0[0,1] of afuzzy interval X' is
defined by:

ﬂ@:z{xD X|rrk((>)2a}. (12)

Each a —cut represents in case of monotonously decreasingergfe functions a classical
interval. The lowerA0 ., and the upper bound?  of ana —cutand its radius&?, are:

min?

ﬂg‘{mm = min( /9§)) : ﬂg‘{max = ma>( %a\’) and ﬂg{r =(ﬂ§{max— ﬂg{mm)/z (12a,b,c)

The integral over albi -cutsequals the membership function:

My = [ M (Y @ (13)

3.2. Uncertainty Propagation within a Sensitivity Analysis

The propagation process of the random and systeneators is separated in two parts.
Whereas the random components are treated withatheof variance propagation (GUM,
chapter 5.2) or within a MC approach (see sectidr), 2he propagation of the systematic
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errors is a range-of-values search problem. Thpawation process leads to a fuzzy interval
for the output quantityy -~ my(X. The approximate midpoint of the fuzzy intervat the

output quantityy,, is:

Yo =1(2,, 2, 2,)= 1@,)- (14)

The computation of the membership function for theasurement results is based on the
a-cuts 2p of the input quantities, within an optimization plem of the following target
function, see, e.g., Kutterer and Neumann (2007):
= min f(z and = max f (). 15
W = M, 1@) W=, max @) (15)
The membership function of the output quantity asstructed based on a sufficient number
of a-cutsfrom Eq. (15):

MmN =[m, (Y with My =[ % B - (16)

In case of linear reference functions for the mensitip function of the input quantities, the
propagation of systematic errors needs only beegpbr thea-cutswith a =0 anda =1.

Finally, the confidence intervay,, s, in the fuzzy case (at the-level) is then obtained by
the combination of both uncertainty components:

yconf,Fuzzy: [A/— 9{9 r; _y+ %’ J . (17)

Whereas thea -level of zero corresponds to the pessimistic cdlse, optimism case is
obtained fora =1. Only the random uncertainty component from thputnquantitiesz
contributes to the lower and upper bound of the dd€fidence intervaly, . e =[ ¥ Y1 -

4. NUMERICAL EXAMPLE FOR AN APPLICATION TO LASERSCANNING

In this section a short numerical example for tenparison of the two approaches from
section 2 and 3 is presented. The aim is to dekectvertical displacements of the bridge
under load, e.qg., due to traffic or train crossingtribing 2007). For this reason, a
laserscanner of typleeica HDS 450@vas placed beneath the bridge; the measuremetiis in
“Profiler Mode” span the green plane in Fig. 3. Tdiscrepancies to the standard case of
normal distributed measurements are meaningful bypynreasons (see also section 1): The
laserscanner carries out very fast measurementsttendneasurements are influenced by
vibrations due to the traffic load of the bridge.
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Figure 3 - Position of the laserscanner beneathiidge (Striibing, 2007)

The time series of the vertical height, (t) of the bridge at the stations 7.28 m and 21.90 m
can be expressed in the local coordinate systeimedfiserscanner by the following equation:

Rean(t) = Sy(HE0S( 2(1)), (18)

with the slope distance,(t) and the zenith angle(t), measured by the laserscanner. The

number of measured epochsis 100. The vertical displacements_,(x t) of the bridge are
obtained by subtracting the mean height of thegeriddlom the time series in Eq. (18):

W= Nl =T 3 N0 = SO0 )=o) s(¥of 4) (19

t=0

4.1. Uncertaintiesfor the measur ements and influence factors

The output quantityy @w,.,.(X ) depends on the following input quantitigs

Accuracy of the distancez(, Type A), and their additional constarg, ( Type B)

- Distance depending term for the accuracy of theadte measurement, Type B)
Incidence angle of the measured distance unddiritige (z,, Type B)

- Accuracy of the zenith anglez(, Type A) and the vertical index erroz,( Type B)
Vertical resolution for the zenith angle (the stagdth of the motor) ¢,, Type B)

The uncertainties and the pdf / membership functaorthe input quantities, are given in
Tab. 1. The assumptions for the uncertaintieg ofz, and z, are based on the technical data
from the manufacturer and for the uncertaintiezgf z, and z, on (Schulz and Ingensand,

2004) and forz, on (Reshetyuk, 2006). The input quantitigsand z, have a correlation of

0.5. In order to have an easier representatior gt quantity is modelled either as random
or as systematic. Please note that in generalrtbertainty budget of each input quantity may
consist of a randorand systematic component.
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nput Error paf / Uncertaint Type
quantity z | component | membership function y yp
Z random normal g=3mm A
systematic triangular a, —a=3mm B

5 y g %, =3 mm
Z random normal 0=0.2mm(1831) c =0.9mm(8987), B
Z, random normal 0=2.6mm(1831)c=7.2mm(8987) B
Z random normal o =20mgon A

. . a, —a=20mgor
Z; systematic triangular %.,, =20 mgon B

. a, —a=10 mgor
z, systematic rectangular %.,, =10 mgon B

Table 1 - Uncertainties for the input quantites

4.2. Specification and Discussion of the Numerical Results

This study focuses on the comparison of two diffietechniques to model and propagate the
occurring uncertainties in Tab. 1. The pdfs and dhder of magnitude of the uncertainties
from Tab. 1 are in our opinion realistic. Their deéstion must be carefully examined in
future work, but this is not part of the paper. Tiesults for the numerical example are
obtained by the techniques described in sectiomd23a

4.2.1. Uncertainties obtained by the Monte Carlo approach

In the MC approach the random and systematic coemsrfrom Tab. 1 are treated as having
a random nature. According to section 2 we obtainuncertainty and the confidence interval

of the output quantityy @w,(x ) for M =10000C runs as:

Monte Carlo result Point 1831 (7.28 m) Point 8987.90 m)
a, 4.4mm 5.9mm
Yeont,me =¥ Y1 with y=2,5% [-8.6mm, 8.6 mm [-11.6mm,11.7mm

4.2.2. Uncertainties obtained by the Fuzzy approach

In the Fuzzy approach the treatment of the random systematic component in the
propagation process of the uncertainties is diffgreee section 3. Whereas the random patrt is
treated with the law of propagation of covariancesith the MC approach, systematic errors
are propagated within a sensitivity analysis (seetisn 3.2). According to section 3.2 we
obtain the uncertainty and the systematic compoogtite output quantityy @w,(x t) for

a =0 anda =1 with Eq. (12c), (15) and (16):
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Fuzzy result (systematic component) Point 18318(h2 Point 8987 (21.90 m)

9{9:1,r = (%:1,max_ %0: 1,mir‘)/2 0.2mm 4.8mm
%):O,r = (%:O,max_ %O: 0,mir~)/2 103mm 161mm

The a -level of zero refers to the pessimistic case ddd -level of one to the optimistic
case. Within the propagation process of the sydienc@amponent, the radiugp, of all

random componentg from Tab. 1 is zero. In the presented propaggtimeess a systematic

error component cannot be reduced by repeated megasnts. The small systematic error for
the Point 1831 is due to the small influence ofdygtematic errors of the zenith angle.

For the propagation process of the random compeneitit the methods described in section
2.1, the uncertainty of the input quantities witlsyestematic error component is set to zero,

and we obtain the uncertainty and the confidentsval of the output quantity @w,, (X t)
for M =10000C runs as:

Fuzzy result (random component) Point 1831 (7.28 np) Point 8987 (21.90 m)

A~

o, 3.9mm 5.4mm

Yeont,me =¥, Y1 With y=2,5% [-7.6mm, 7.6 mm| [-10.6mm, 10.7mm

Finally, we obtain the confidence interval for fhezzy approach with Eq. (17) fer =0 and
a =1 as:

Fuzzy result (confidence interval) Point 1831 (728 Point 8987 (21.90 m)
yconf,Fuzzyz[X‘ %, y+%,] fora=1 [-7.8mm, 7.8 mm| [-15.4mm,15.5mm

Yeont, Fuzzy =LY~ Y0, » Y+ Y] for a=0| [-17.9mm,17.9mm | [-26.7mm, 26.8mm

5. DISCUSSION AND OUTLOOK

In the Monte Carlo approach, the uncertainty ofsixgtematic component can be reduced by
averaged/repeated measurements. Therefore, itn®ra optimistic representation of the
uncertainties than in the Fuzzy approach, wheresystematic component of the uncertainties
cannot be reduced by averaged/repeated measurements

Further work has to deal with an extended discussiothe presented Fuzzy approach with
input quantities having both types of uncertaintiasrandom and systematic component.
Additionally, the bias of the output quantity rasuy from the evaluation of non-linear
functions has to be discussed in detail, espedialiige Fuzzy approach.
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