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Abstract: Understanding and prediction of surface movement are both technically and
socially important. Construction works, peat oxidation, clay compaction, and ground water
withdrawal are shallow processes that contribute to subsidence; oil and gas production and
salt mining are deep causes. We have developed an inversion procedure to disentangle the
deep and shallow causes of subsidence. Our procedure employs a Bayesian inversion scheme,
using forward models and other a priori information about the shallow and deep amount of
compaction. Parameter estimation thus takes place at two different depths in the subsurface,
thereby disentangling deep and shallow compaction processes causing surface movement.
The uncertainty in the surface measurements and a priori estimates is naturally incorporated.
Furthermore, spatial correlations can be taken into account through inclusion of the
covariance matrix. The inversion scheme is demonstrated for some artificial cases. The first
case had a compacting gas field and a compacting shallow peat layer. We demonstrate that
assumptions on the subsidence bowl shape were not necessary, even when there was scatter in
the data. We also show how the neglect of either deep or shallow causes of subsidence can
lead to wrong results. The advantage of using the a priori estimates of the compaction and the
covariance matrix obtained by Monte Carlo simulations is demonstrated with a second
artificial example. It represented two polder areas, in which the water table was controlled to
different levels. A robust solution was obtained for each polder unit, while a simpler a priori
estimate based on the expected average clay thickness failed to reproduce the original
compaction. Monte Carlo simulations can also be applied to compaction in depleting gas
reservoirs. There is often knowledge available about spatial correlations, even when the
absolute values of the a priori compaction data are quite uncertain. Then, the explicit
incorporation of a priori known spatial correlations significantly improves the result,
particularly in comparison with a general smoothness constraint (if possible).

1. Introduction

Subsidence of the surface is an important social issue in the Netherlands [1] and elsewhere [2,
3]. This is mainly due to the associated enhanced risk on flooding and on damage to buildings
and infrastructure. Developments like urbanisation, intensification of subsurface use, sea level
rise and more intensive rainstorms tend to increase the urgency of the issue. Reliable history
matching and forecasting of surface movement is required for applications as ground water
management, optimisation of hydrocarbon extraction and monitoring strategies, but also for
liability issues. Current limitations in history matching and forecasting are mainly related to
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uncertainty in surface movement and other variables and quantification of surface movement
causes. The present paper focuses at the quantification of surface movement causes.

Several natural and anthropogenic processes can result in surface movement. Some of these
occur at or near the surface, like construction of buildings, roads and tunnels, oxidation of
peat, clay compaction, and withdrawal of ground water. Others primarily affect the deep
subsurface: earthquakes, extraction of hydrocarbons, salt tectonics and geothermal production
[4]. Each process has a characteristic scale in time and space on which it affects surface
movement. However, different processes may interfere or overlap in scale (Figure 1), making
it difficult to distinguish them.

Inverse parameter estimation techniques have been applied to estimate reservoir compaction
from surface subsidence, considering the latter as a result of reservoir depletion only [5, 6, 7].
These studies did not take into account the influence of other processes — in particular shallow
compaction — on surface movement. Similarly, aquifer parameters have been estimated from
surface movement, considering the latter to be the result of groundwater extraction or
recharge only [8]. Neglecting either deep or shallow processes, however, may lead to
erroneous reservoir parameterisation.

Our goal was to disentangle shallow and deep causes of surface movement in an objective
way by solving the parameter estimation or history matching problem. Still, data uncertainty
is addressed explicitly in our method.

We included forward models of both shallow and deep compaction processes. Parameter
estimation thus takes place at two different depths in the subsurface, thereby disentangling
deep and shallow compaction processes causing surface movement. The inverse problem of
surface movement requires additional information to regularise it. Such information is usually
in the form of an a priori parameter estimate or a spatial smoothness constraint. We used the
Bayesian approach of parameter estimation, which is well established and designed to cope
with these kinds of problems [9, 10]. Approaches that include single penalty and damping
factors to determine the weight of the a priori information [11] can be seen as reduced
Bayesian methods.

We present the methodology in the first part of this study. The second part shows how the
algorithm was validated and tested using a number of artificial cases, and addresses the
limitations of the methodology. Finally, we draw some conclusions on the applicability of the
algorithm to the surface subsidence issue.

subsidence
pattern d;

shallow
compaction
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Figure 1: Sketch of shallow and deep causes of compaction (m) resulting in surface subsidence (d).
Arrows denote the area of influence of individual compaction sources.
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2. Methodology

2.1. Inverse model formulation
The basis of the problem can be described by:
G(m)=d (1)

m is the model parameter vector, i.e. the compaction. Both the deep and the shallow
subsurface are discretised; m is geographically referenced on both levels. G is a forward
model predicting the subsidence caused by both shallow and deep compaction in the locations
that are associated with the measured surface movement data d. It is assumed that the system
is linear and all component distributions are Gaussian.

We were looking for the maximum likelihood solution of m, provided that d and G are
known. However, this problem is usually ill-conditioned or even ill-posed: with direct
inversion, small variations in the measurements would cause large variations in the computed
compaction. The problem is ill-posed when there are more elements in the model vector m
than in the data vector d. In both cases, additional information is required to regularize the
problem.

We call P(d/m) the conditional probability distribution of m given a set of data d. Additional
information is summarized in P(m), the a priori probability distribution of m. P(m) contains
information in the form of an initial model estimate <m> = m° and a smoothness constraint.
Inversion of Eq. 1 with account of the a priori information is then achieved by maximizing
the conditional probability for m with given d, P(m|d). Following Bayes’s fundamental
theorem, this probability is proportional to the product of the two probabilities, P(d|m) *
P(m). The probabilities are given by:

—%((Gm—d)r (covG) ™ (Gm-d)) 7%((m7<m>)r (covm)~! (m7<m>))7%((Dm)T (covD)™' (Dm))
e

P(d|m) * P(m) =<

* (2)
J27) | (covG) | J2z) | (covm) |

In this expression, N is the number of realisations, cov is short notation for covariance matrix,
and D is a matrix containing a priori information on spatial correlations.

Maximising P(djm) * P(m) as a function of m requires minimising the exponent of the
resulting exponential. In the minimum, the derivative with regard to m is zero for every single
element of the vector m. Differentiation and utilisation of the symmetry of the matrices C",
CP and C° results (in matrix notation) in:

-G"(c?)" (Gm-d)-(C") " (m-m")- D" (C”)" (Dm)=0 3)

Isolating the terms with m at one side of the equation and inverting the square matrix that
precedes it results in the expression:

. 1 _
m = {GT(CG) 'G+(Ccmy’ +DT(CD)"D} {GT(CG) 'd +(C'”)_1m°} (4)
This is the wanted solution to the inversion problem with inclusion of the a priori information
on the compaction model. If there is no covariance in the system, Eq. (4) simplifies to the
least squares solution: m = {o’szTG +0 7w+ o’chTD}_l {o’szTd +o wm’ } If 720

and o . are constant, they are sometimes referred to as damping and penalty factor
respectively (cf. Du and Olson, 2001).
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2.2. Forward models

Two forward models were used. The first model describes both shallow compaction and
surface subsidence due to peat oxidation. Shallow compaction can be due to lowering of
aquifer head and/or lowering of groundwater level [12, 13, 14] (see also [2] and references
therein). The compaction processes have both poro-elastic and inelastic effects. Irreversible
compaction is likely to take place if the pre-consolidation stress is exceeded. In this study a
convenient, numerically fast, 1D approach was adopted after Koppejan [15], in which
compaction is described empirically. The approach has been described in more detail in Ref.
[1]. Translation from layer compaction to surface subsidence was considered to be (nearly)
instantaneous and primarily of local significance (Figure 1). Compaction could thus directly
be interpolated to surface subsidence, provided that it occurred at shallow depth (< 50 m
below surface). Peat oxidation was modelled by using a constant oxidation rate for dry peat,
and taking into account the resulting decrease in (dry) peat thickness over time.

The second forward model describes the effect of a decrease in gas pressure in the reservoir
during gas production. The pressure drop results in a higher effective pressure and thus in
reservoir compaction. Due to the elastic properties of the overburden this compaction is
usually transferred almost instantaneously to the surface, resulting in surface subsidence.
However, the elasticity of the subsurface causes the subsidence to have a larger lateral extent
than the compaction. The excess horizontal distance for which reservoir compaction has an
influence at the surface is roughly of the same order as the depth of the reservoir (Figure 1).

The precise form of the subsidence bowl resulting from the deep compaction depends on the
elastic properties of the subsurface. We used a linear, semi-analytic approach designed to
account for layering. This approach employs integration of influence functions representing
the subsidence bowl of a centre of compression. A centre of compression is a mathematical
expression for a finite amount of compaction that is concentrated in a point. With horizontal
layers only, a rotationally symmetric influence function can be constructed that applies for
every deep compaction grid point, because the subsurface possesses translational symmetry.
The total predicted subsidence in a point, resulting from the deep compaction, is obtained
after summation over all grid blocks in the reservoir. For a comprehensive description of the
construction of the influence function in a layered subsurface we refer to Ref. [16].

2.3. Inverse model algorithm

Equation 4 has been implemented in Matlab 7.0. For vector d the number of observations,
their geographical location and variance can be chosen freely. Discretisation of m was done
using rectangular and regular grids for shallow and deep compaction separately. Inverse
distance interpolation was used for conversion between d and the shallow compaction grid. At
every point of the compaction grids m" had to be defined. Variance and covariance in m°
could be varied from nearly zero to infinity. For the a priori information on spatial
correlations in D the finite difference approximation of the Laplacian operator was used.
Information on the uncertainty in spatial smoothness is often only available as an order of
magnitude, which makes use of one penalty factor sufficient for most applications. This factor
can also be varied from nearly zero to infinity. Gauss-Jordan elimination [17] was used for the
matrix inversion.
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3. Model validation and testing

The inverse model algorithm has been applied to a number of artificial test cases. Synthetic
subsidence data have been calculated using pre-defined compaction grids in the forward
models. The extensive and fully constrained synthetic subsidence data sets were sampled in
various ways, and an inversion was carried out. We have used these exercises to validate the
model and to test under what conditions our inverse method is or is not capable of deriving
the original compaction grids. We present a small selection of the results.

3.1. Shallow and deep compaction: a simple artificial case

The pre-defined shallow compaction grid consisted of a linearly increasing regional east-west
trend (Figure 2a). In geological terms this may be considered to represent compaction of a
(highly idealised) eastward thinning peat layer that pinches out at the eastern area boundary.
The pre-defined deep compaction grid resembled a rectangular shaped gas reservoir with
sharp boundaries (Figure 2b), as may be the case in faulted areas. The elastic properties of the
subsurface were not depth averaged: a relatively strong intermediate layer was situated at
depth between 2.1 and 3.0 km. The calculated surface movement (Figure 2c) was a
combination of the east-west trend induced by the shallow compaction (between 0 and 0.5 m)
and a subsidence bowl (with a maximum depth of -0.29 m) related to the deep compaction.
Thus, in the central part of the area surface movement was controlled by shallow and deep
compaction to approximately the same extent.
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Figure 2: Forward calculation a) Shallow compaction (40x30 grid) increases linearly from 0 cm at the
eastern boundary to 50 cm at the western boundary. b) Deep compaction (25x25 grid) of 1 m within
the rectangular shaped reservoir. ¢) Resulting surface movement prediction (20x20 grid).
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Figure 3: Synthetic subsidence data viewed from a different angle than Figure 2d. a) Subset (dots)
including 10% noise (¢ = 0.05) b) Subset (dots) including 50% noise (c = 0.28) c¢) Subset (dots)

including 100% noise (¢ = 0.55).
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In practice only a finite and rather small number of measurements are available to constrain
the movement of the surface, and these data are often rather noisy, especially if the surface
movement is relatively small. Hence, inversion was performed using only a random sample of
10% of the calculated surface movement result of the forward model (40 data points).
Random noise was added progressively to the subsidence data to test the robustness of the
method (Figure 3). With 10% noise, the subsidence data had a smaller variance than the initial
compaction, for the tests with larger noise the variance of the subsidence was larger. The
correct initial compaction models were introduced in the inversion procedure and no attempt
was made to smooth the compaction models.

The results are not shown graphically, as they are similar to the input presented in Fig. 2. In
the test with 10% noise the subsidence data were considered to be more reliable than the
proposed initial compaction models. Hence, these compaction models were (slightly)
adjusted. In this particular case this meant that they became noisier. In the other tests the
subsidence data were less reliable than the proposed (correct) initial compaction models. This
effectively removed (the larger part of) the introduced noise from the subsidence data. This
clearly demonstrates the strength of using a priori information in the inversion method.

3.2. Inversion with neglect of shallow or deep compaction

The influence of shallow compaction on surface movement has to be taken into account when
the surface movement above a producing or abandoned field is monitored, unless the
magnitude of shallow compaction is negligibly small on the time scale of interest, or if
measurements are only made at locations that are truly well founded at depth. The error
created by neglecting shallow compaction is demonstrated in cases where the initial model of
the deep compaction was correct, and known within different degrees of certainty. The results
(Figure 4) show that — depending on the confidence in the initial model of the deep
compaction — there was either a large difference between observed and estimated subsidence,
or the deep compaction was substantially modified. In the first case the difference in
subsidence displayed a clear east-west trend. Such a clear and deviating trend may serve as a
warning that a significant process (shallow compaction) has been neglected. If on the other
hand the initial deep compaction model was assumed very uncertain, this effect was small,
whereas estimated deep compaction did extend well beyond expected reservoir boundaries
and displayed a clear east-west trend: subsidence that was caused by shallow compaction was
now attributed erroneously to deep compaction.

Naturally, any unexpected source of deep compaction (e.g. aquifer support, compaction in
Tertiary clays, natural depletion of a deep aquifer after a faulting event) will also influence
inversion of shallow compaction. The error created by neglecting deep compaction can be
demonstrated for the case where the initial model of the shallow compaction is correct, but is
known within different degrees of certainty. The additional subsidence in the data is corrected
for locally, unless a certain smoothness of the shallow compaction is assumed. Then the
deviation has in fact the shape of a bowl. Thus, subsidence caused by deep compaction is now
attributed erroneously to shallow compaction.
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Figure 4: Inverse calculation results assuming only deep compaction a) Best estimate of deep
compaction for a 6* of the initial deep compaction of 0.01, 0.1 and 1 respectively. b) Original
subsidence data (mesh) and the best estimate of the subsidence (dots) based on forward modelling
using the deep compaction estimates shown in (a).

3.3. Inversion using Monte Carlo simulation

Here a more complex artificial case of shallow compaction is introduced (Figure 5a). At the
start the model had an initially flat surface at 0 m and was 5 m thick. It was divided into two
polder units, separated along a sharp east-west boundary (the dike). At the bottom of the
model an aquifer was present with an hydraulic head of 0.5 m above surface. The northern
polder unit had an initial phreatic level of -0.8 m below the surface, whereas the southern
polder had an initial phreatic level of -0.5 m below the surface. After 5 years, the phreatic
level in both polders was lowered by 0.2 m and the hydraulic head of the aquifer was lowered
by 0.1 m. In total 15 years were modelled. The subsurface consisted of peat that was covered
by a layer of clay. At one boundary the clay thickness was 0.5 m, the opposite boundary had a
clay thickness of 0.24 m. The resulting subsidence movement was resampled to provide a
random set of subsidence data (40 data points; Figure 5b). This set was used as input in the
inversion.
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Figure 5: Forward calculation. a) Shallow compaction (40x30 grid) of 1 particular realisation in which
clay thickness decreases from 0.5 m to 0.24 m. b) Resulting surface movement prediction (20x20
grid). Subset (dots) on which inversion will be based.
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In the inversion it was assumed that the set up of the model was known. However, clay
thickness was highly uncertain at the second boundary: it could be between 0 en 1 m thick (it
was 0.24 m). A Monte Carlo simulation (50 realisations) was performed in order to derive a
priori estimates of (median) shallow compaction, variance and covariance for every grid point
as a function of the uncertainty in clay thickness. Alternatively, one could choose to simply
use the realisation of the expected average clay thickness of 0.5 m as the a priori estimate and
then allow for a large variance in the model. Due to the known presence of abrupt, artificial
boundaries between polder units, use of a blind smoothing constraint is not justified in either
case.
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Figure 6: Inverse calculation results a) Best estimate of shallow compaction using the median of the
Monte Carlo simulation and the corresponding covariance matrix. b) Best estimate of shallow
compaction using average clay thickness of 0.5 m with a constant variance of 1*10” m”.

Inversion results of both alternatives are shown in Figure 6. Clearly, inversion using the
Monte Carlo results approached the original compaction (Figure 5a) best. Differences reflect
the high amount of uncertainty and scarcity of data points. The result is remarkably smooth
given the absence of a smoothness constraint. This is partly due to the reasonable a priori
estimate and partly due to the introduction of non-zero covariances. The non-zero covariance
quantifies expected relations between grid points. In this particular case the grid points were
sharing the same groundwater regime or had a similar clay cover thickness. In effect, each
data point (partially) updated all other grid points with which it shared a non-zero covariance.
On the other hand, simply using average clay thickness in combination with a high variance
did produce a lot of spikes and completely failed to reproduce the abrupt change in
compaction in one of the polder units (Figure 6b).

Hence, it is worthwhile to use Monte Carlo simulations for defining a priori estimates. The
explicit use of the covariance can be particularly advantageous in optimisation problems:
adding only a few more data points at carefully chosen locations sharing a high covariance
with many other grid points and/or grid points of interest will significantly improve the
solution constraints.

4. Conclusions

We have created and tested a Bayesian inversion scheme that disentangles deep and shallow
causes of subsidence. Assumptions on the shape of the subsidence bowl are not necessary,
even when there is considerable uncertainty in the measurements. The shape of the subsidence
bowl is a result of the inversion procedure, and the knowledge about the subsurface is
incorporated at its most basic level: the shape of the reservoirs and the expected compaction
behaviour.
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When the contributions of deep and shallow compaction to the subsidence have a similar
order of magnitude, the neglect of one of them leads to wrong conclusions. This has been
demonstrated using a realistic artificial example.

Instrumental in the procedure is the use of proper a priori information and spatial
correlations. This information has been introduced in the covariance matrix. A possible
method to establish this matrix is through Monte Carlo simulations. In such simulations,
proper attention must be given to the forward models as they have a significant influence on
the quality of the final result. A second artificial example has shown the added value of the
use of Monte Carlo simulations and their results for the a priori estimates of the compaction,
and its variance and covariance.

Monte Carlo simulations can also be applied to compaction in depleting gas reservoirs. There
is often knowledge available about spatial correlations, even when the absolute values of the a
priori compaction data are quite uncertain. Then, the explicit incorporation of a priori known
spatial correlations significantly improves the result, particularly in comparison with a general
smoothness constraint.

The method is suitable for monitoring reservoir behaviour and depletion zones lacking
pressure measurements, such as lateral aquifers or undrilled reservoir blocks. These two
applications were put forward by Marchina [5]. However, our method can also be applied in
areas where the subsidence signal of reservoir depletion is distorted by unrelated shallow
compaction.
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