Laboratory for Semantic Information Technology

Bamberg University

Ontology-based Verification of Core Model Conformity in Cadastral Modeling

Claudia Hess, Christoph Schlieder

Conference "Standardization in the Cadastral Domain" Bamberg, Germany December 09-10, 2004

Bamberg University

Agenda

- 1. Information Technology and Standardization
- 2. Conformity Verification for the Cadastral Domain
- 3. A Worked Example
- 4. Conclusions

Information Technology

Standard software for cadastral systems?

- Currently, cadastral systems are custom-made technology
- Standard software is state-of-the-art in other application domains: Enterprise Resource Planning (ERP) systems
- ERP run worldwide despite differences in IT infrastructure, data and process models, national legislation

Conformity verification

- Technology that supports data and process modeling
- Basis for cadastral systems as customizable standard software

Cadastral Standardization

A common misunderstanding

- Standardization does NOT aim at having a single cadastral system running in all countries.
- The purpose of standardization consists in identifying common structures in cadastral data and process models
- and to exploit them for building software components for customizable standard software

Data and process modeling

- Development of a core cadastral data and process model
- National models as extensions of the core cadastral model

Core Cadastral Domain Model

Greek Cadastral Model

Domain Modeler (Greek Cadastre)

Laboratory for Semantic Information Technology

Bamberg University

Conformity Verification

- 1. Information Technology and Standardization
- 2. Conformity Verification for the Cadastral Domain
- 3. A Worked Example
- 4. Conclusions

Iterative Modeling Process

Data Modeling Technologies

Technology generations

- Entity-Relationship Models
- Object-oriented Modeling (UML and literate UML)
- Ontological Modeling

Ontological modeling?

- Enhanced expressiveness
- Reasoning support

Ontological Modeling

XMI + text

```
<UML:Class xmi.id = 'a15' name = 'Person'
visibility = 'public' isSpecification = 'false'
isRoot = 'false' isLeaf = 'false' isAbstract
= 'false' isActive = 'false'>
```

```
<UML:Attribute xmi.id = 'a373' name =
'tmin' visibility = 'private' isSpecification =
'false, ownerScope = 'instance'>
```

</UML:Attribute>

</UML:Class>

"Each *Person* is either a *NaturalPerson* or a *NonNaturalPerson*. No Person can be a *NaturalPerson* and a *NonNaturalPerson*."

OIL

```
<daml:Class rdf:about="#Person" rdfs:label="Person">
 <daml:Restriction>
    <daml:onProperty>
     <daml:DatatypeProperty
          rdf:about="#Person tmin"/>
    </daml:onProperty>
    <daml:hasClass rdf:resource="http://
    www.w3.org/2000/10/XMLSchema #date"/>
 </daml:Restriction>
 <daml:disjointUnionOf rdf:parseType=
           "daml:collection">
    <daml:Class rdf:about="#NaturalPerson"/>
    <daml:Class rdf:about="#NonNaturalPerson"/>
 </daml:disjointUnionOf>
</daml:Class>
```

Generic Mapping Relations

Modeling workflow

- Correspondences are identified by domain experts
- Small set of generic mapping relations

Correspondences

- Classes
- Attributes
- Classes and attributes
- Heterogeneity problems
 - Structural heterogeneity: Semantically equivalent information is stored in different data structures
 - Semantic heterogeneity: Different interpretation of syntactically the same information

Correspondence in OIL

Correspondence between attributes: daml:samePropertyAs

<daml:ObjectProperty

rdf:about="core_cad.daml#Person_SubjID" rdfs:label="Person_SubjID">

<daml:domain rdf:resource="core_cad.daml#Person"/>

<daml:range rdf:resource="core_cad.daml#oid"/>

<daml:samePropertyAs rdf:resource=

"#Greek_cad.daml#BENEFICIARY_BEN_ID"/>

</daml:ObjectProperty>

Types of Correspondence

Reasoner

 determines type of the identified correspondence by ontological reasoning

Types

- Equivalence
- Subsumption
- Overlapping

Special Cases

- Restriction of the range of an attribute
- Co-extensional concepts without corresponding attributes
- Corresponding packages

Query and Interpretation

Туре	Query to RACER
Equivalence	concept-equivalent?
Subsumption	concept-subsumes?
Overlapping	Create new class + concept-satisfiable?

Example:

(concept-equivalent?

|core_cad.daml#Person||Greek_cad.daml#BENEFICIARY|);

•••

Result: True or false

Interpretation: The classes Person and BENEFICIARY are, according to the identified correspondences, overlapping.

Is this type of correspondence sufficient?

Agenda

- 1. Information Technology and Standardization
- 2. Conformity Verification for the Cadastral Domain
- 3. A Worked Example
- 4. Conclusions

1st Iteration: "Person"-Classes

1st Iteration: Results of the Reasoner

Correspondences only of the overlapping type:

- Person BENEFICIARY
- NaturalPerson BENEFICIARY
- NonNaturalPerson BENEFICIARY
- No relation between the specialization classes
 - No corresponding attribute for
 - t_min and t_max (class Person)
 - BEN_TYPE (class BENEFICIARY)

2nd Iteration: Proposed Modifications

2nd Iteration: Results of the Reasoner

Person and BENEFICIARY are equivalent

Temporal aspects must be either added to the class BENEFICIARY or omitted in the class Person!

Equivalence between the specialization classes:

- NaturalPerson equivalent with NATURAL,
- NonNaturalPerson equivalent with LEGAL.

Agenda

- 1. Information Technology and Standardization
- 2. Conformity Verification for the Cadastral Domain
- 3. A Worked Example
- 4. Conclusions

Bamberg University

First results

Evaluation of the example

- Poor results of the first iteration due to the limited number of formalized correspondences
- First iteration provides advice for the subsequent iteration
- Results of the 2nd iteration must be evaluated by domain experts

Next steps

- Refinement of the correspondences between core and Greek cadastral model
- 2nd iteration with all refined correspondences
- Elaboration of the attribute-level of core and domain models

Bamberg University

Conclusions

Improved conformity between the models

- Resoner results provide useful advice for subsequent iterations
- Iterative refinement of the correspondences

Difficulties in the models are revealed

- Need for discussing core and domain models
- Core and domain models at the same level of abstraction

Conforming models as basis for new applications

- Exchange of cadastral data
- Development of customizable standard software

Future research

- Conformity verification is not restricted to the cadastral domain
- Extension of the conformity verification to process models